

Contents
Part 1 Construction. Basic Principles. Operating Instructions
Part 2 Application Programs

Part 1
Section 1 Introduction to the kit 2
Section 2 The Manual—its objectives and usage 3
Section 3 Construction procedure. Notes on soldering 4
Section 4 Power Connect and Switch On 10
Section 5 Monitor Operation 11
Section 6 Basic Principles of the MK1 4 19
Section 7 MK14 Language-Binary and Hexadecimal 23
Section 8 Programming Notes 30
Section 9 Architecture and Instruction Set 35
Section 10 Writing a Program 43
Section 11 RAMI/0 51

Part 2
Monitor program listing* 58

Mathematical 68
Multiply
Divide
Square Root
Greatest Common Divisor
Electronic 73
Pulse Delay
Digital Alarm Clock
Random Noise
System 77
Decimal to Hex
Relocator
Serial data input*
Serial data output*
Games 84
Moon Landing
Duck Shoot
Mastermind
Silver Dollar Game
Music 95
Function Generator
Music Box
Organ
Miscellaneous 100
Message
Self-Replicating Program
Reaction Timer
Devised and written by: David Johnson —Davies
except programs marked thus*

1

1 Introduction to the kit
I The MK1 4 comprises a full set of components to build up a
I completely functional computer.

When the unit has been correctly assembled only the connection of a
suitable power source is needed for the display to light up and the user
then finds that command and control of the unit is literally at his fingertips
via the keyboard.
Having mastered the simple rules for operation of the keyboard and
interpretation of the display, it is immediately possible to study the
workings of the system and the computer's instructions, and experiment
with elementary programming.
From this point the user can progress to the library of ready-written
programs available in Part II of this manual, and to programs of his
own invention. Because of the inherently enormous versatility of the
digital computer it is hard to suggest any particular direction which the
independent programmer may take. Arithmetic, logic, time measurement,
complex decision making, learning ability, storage of data, receiving
signals from other equipment and generating responses and stimuli can
all be called upon.
Thus calculators, games, timers, controllers (domestic, laboratory,
industrial), or combinations of these are all within the scope of the
machine.

External circuits Fig. 1.1
t— n - r V i I I M i i i l i t i
t—

input/
output

RAM
Read-Write Memory
(user's programl

CPU ROM
Fixed Memory
(user control
supervision prog.)

1
Key

TERMINAL
board Oil play

ROM
Fixed Memory
(user control
supervision prog.)

1
Components of the kit include central processor, pre-programmed control
memory, read-write memory, input/output circuits, the terminal section
i.e. the keyboard and display, and interfacing to the terminal.
This line-up corresponds to the basic elements present in even the most
sophisticated multi-million pound computer. Indeed the fundamental
principles are identical. However, the user of the MK1 4 who wishes to
understand and utilise these principles has the advantage of being able to
follow in detail the action and interaction of the constituent parts,
which are normally inaccessible and invisible to the big computer operator.
Do not regard the MK1 4 as an electronics construction project. The
MK1 4 is a computer, and computers are about software. It is the
program which brings the computer to life, and it is the program
which is capable of virtually infinite variation, adjustment and expansion.
Of course an understanding of the architecture of the machine and the
functions of the separate integrated circuits is valuable to the user. But
these aspects conform to a fairly standard pattern and the same
straightforward set of interconnection rules regardless of the task or
function the computer is performing.

2

2The Manual
-its objectives and uses
The MK1 4 is intended to bring practical computing to the widest

possible range of users by achieving an absolute minimum cost. The wider the
user spectrum, the wider, to be expected will be the variation of expertise
the manual has to cater for; from the total novice, who wishes to learn the
basic principles and requires thorough explanation of every aspect, to the
experienced engineer who has immediate practical applications in view.
Additionally, the needs of the beginner can be sub-divided into three parts:-
1. An informal step by step procedure to familiarise with the operation

of the MK1 4. If this is arranged as an interactive 'do' and 'observe'
sequence, it becomes a comparatively painless method of getting a
practical 'feel' for the computing process. Section 5.

2. A formal definition/description of the significant details of the
microprocessor itself, i.e. its architecture and instruction set. Users
of all levels are strongly recommended to study this section, (Section
9) at an early stage. It is supported by a programme of practical
exercises aimed to precisely demonstrate the elemental functions of
the device, and the framework inside which they operate. It is
emphasised that to gain the most complete fluency in what are the
basics of the whole subject is not merely well worth the effort but is
essential to the user's convenience?

3. An explanation of the general principles of the digital processor,
along with the associated notation and conventions, section 6. This
also breaks down into the joint aspects of hardware and software.

Clearly parts of the above will also prove useful to the knowledgable user
who, however, will probably be able to skip the advice in section 3 on
basic electronic assembly technique. The control part of this section
contains information specifically pertinent to the MK14 and should be
read by all.
Further sections to be referenced when the MK1 4 has been assembled,
and the user has built up a working understanding, are those discussing
programming techniques and methodology. From that point the
applications examples of varying degrees of complexity and function, in
Part II, should be possible for the reader to tackle. Note: This manual applies to kits with Issue 4 or 5 boards and the revised
SCIOS monitor.

3Construction procedure
Notes on soldering

The construction of the unit is a straightforward procedure consisting of
inserting the components in the correct positions and soldering them in
place. If this is done without error the system should become functional as
soon as power is applied. To ensure that this happens without any hitches
some recommendations and advice are offered. A step-by-step
construction procedure with a diagram is laid down. An appendix to this
section contains notes on soldering techniques.
Plug in socket option for integrated circuits
The I .C. components utilised in the MK1 4 are both robust and reliable.
But accidents are possible —and should an I.C. be damaged either during
construction or later, its identification and replacement is made many
orders easier if devices are mounted in sockets. Socket usage is therefore
most strongly recommended, particularly where the user is concerned
with computing rather than electronics. Science of Cambridge offer a
MK14 rectification service specifying a component cost only replacement
charge when the system in question is socket equipped.
Integrated Circuit Device Handling
M.O.S. integrated circuits historically have gained a reputation for
extreme vulnerability to damage from static electricity. Modern devices
while not unbreakable embody a high degree of protection. This means
that high static voltages will do no harm as long as the total energy
dissipated is small and a practical rule of thumb is that if the environment
is such that you yourself don't notice static shocks, neither will the I.C.
It is essential for the soldering iron to be earthed if I.C.'s are being soldered
directly into the P.C. board. The earth must ground the soldering iron bit.
This warning applies to any work carried out which might bring the
soldering iron into contact with any I.C. pin.
Catastrophe is achievable with minimum trouble if certain components are
fitted the wrong way round.
Component Orientation and I.C. Pin Numbering
Three types belonging to the kit must be oriented correctly. These are the
I.C.'s, the electrolytic capacitors and the regulator,
(i) I.C's are oriented in relation to pin 1. Pin 1 can be identified by

various means; fig. 3.1 illustrates some of these:-

Drawing Viewed Fig. 3.1
from Top Pin n+1

Slight indentation
or protuberance

Cut out

Pinn

Pin 1 itself may bear a faint indentation or a slight difference from other
pins. The remaining pins are numbered consecutively anti-clockwise from
Pin 1 viewing device as in Fig. 3.1.
Note position of type no. is not a reliable guide.
(ii) Electrolytic capacitors have a positive and a negative terminal. The

positive terminal is indicated by a' + ' sign on the printed circuit. The
capacitor may show a ' + ' sign or a bar marking by the positive
terminal. The negative is also differentiated from the positive by
being connected to the body of the device while the positive appears
to emerge from an insulator.

(iii) The regulator has a chamfered edge and is otherwise asymmetrical-
refer to assembly diagram.

Assembly Procedure
Equipment required —soldering iron, solder, side-cutters or wire snippers.
Step No. Operation

1 Identify all resistors, bend leads according to diagram and
place on layout diagram in appropriate positions.

2 Insert resistors into printed circuit and slightly bend leads at
back of board so that resistors remain in place firmly agajnst
the P.C.

3 Solder resistors in place and cut surplus leads at back of
printed circuit.

4 Re-check soldered joints and component positioning.

5 Identify all capacitors, bend leads according to diagram and
place on layout diagram in appropriate positions.

6 Insert capacitors into printed circuit and slightly bend leads
behind board so that capacitors remain in place firmly against
the P C.

7 Solder capacitors in place and cut surplus leads behind P C.

8 Check soldered joints, component positions and orientation.

9 (If sockets are being used skip to step 1 4). Identify and place
in position on diagram all I.C's with particular reference to
orientation.

10 Insert I.C's into P.C. Note:- The I.C. pins will exhibit a degree
of 'splay'. This allows the device to be retained in the P.C.
mechanically after insertion so do not attempt to straighten,
and use the following technique: place one line of pins so they
just enter the board; using a suitable straight edged implement,
press opposing row of pins until they enter the board; push
component fully home.

1 1 Re-check device positioning and orientation with EXTREME
care!

p No
12

13

14

1 5

16

1 7

18

1 9

20

21

22

23

24

25

26

27

28

29

Operation
Solder I.C's in place. It is not necessary to snip projecting pins.

Re-check all I.C. soldered joints,
(skip to step 20)

Place appropriate sockets in position on diagram. See Fig. 3.2
(centre pages).

Insert first or next socket in P.C. board. These components are
not self retaining so invert the board and press onto a suitably
resilient surface to keep socket firmly against the board while
soldering.

Solder socket into position.

(repeat steps 1 4-1 6 until all sockets are fitted)

Identify and place into position on diagram all I.C's with
particular reference to orientation.

Transfer I.C's one-by-one to P.C. assembly and place in
appropriate sockets.

Check all socket soldered joints.

Insert regulator and solder into position. See Fig. 3.3.

Insert push button and solder into position. See Fig. 3.4.

Mount keyboard. See Fig. 3.5.

Mount display. See Fig. 3.6.

Ensure that all display interconnections are correctly aligned
and inserted.

Solder display into position.

Solder crystal in position.

Re-check all soldering with special reference to dry joints and
solder bridges as described in appendix on soldering technique.

(Optional but advisable). Forget the whole job for 24 hours.

Re-inspect the completed card by retracing the full assembly
procedure and re-checking each aspect (component type,
orientation and soldering) at each step.
When the final inspection is satisfactorily completed proceed to
section 4, Power Connect and Initial Operation.

BACK

'Regulator

Note space
between regulator and
P.C.B. or insulate

,Display BACK

Printed Circuit Board

? Fig 3.5

Keyboard
escutcheon

Appendix Soldering Technique

Poor soldering in the assembly of the MK1 4 could create severe
difficulties for the constructor so here are a few notes on the essentials
of the skill.

The Soldering Iron Ideally, for this job, a 1 5W/25W instrument should
be used, with a bit tip small enough to place against any device pin and
the printed circuit without fouling adjacent joints. IMPORTANT—ensure
that the bit is earthed.

Solder resin cored should be used. Approx. 1 8 S.W.G. is most
convenient.

Using the Iron The bit should be kept clean and be sufficiently hot to
form good joints.
A plated type of bit can be cleaned in use by wiping on the dampened
sponge (if available), or a damp cloth. A plain copper bit corrodes fairly
rapidly in use and a clean flat working face can be maintained using an old
file.A practical test for both cleanness and temperature is to apply a touch
of solder to the bit, and observe that the solder melts instantly and runs
freely, coating the working face.

Forming the Soldered Joint—with the bit thus 'wetted' place it into
firm contact with both the component terminal and the printed circuit
'pad', being soldered together. Both parts must be adequately heated.
Immediately apply solder to the face of the bit next to the joint ; Solder
should flow freely around the terminal and over the printed circuit pad.
Withdraw the iron from the board in a perpendicular direction.
Take care not to 'swamp' the joint, a momentary touch with the solder
should be sufficient. The whole process should be complete in one or
two seconds. The freely flowing solder will distribute heat to all part of the
joint to ensure a sound amalgam between solder and pad, and solder and
terminal. Do not hold the bit against the joint for more than a few seconds
either printed circuit track or the component can be damaged by
excessive heat.

Checking the Joint A good joint will appear clean and bright, and the
solder will have spread up the terminal and over the pad to a radius of
about t1* inch forming a profile as in Fig. 3.7(a).

Fig. 3.7 Unreliable or no contact

Fig 3.7 (b) and (c) show exaggerated profiles of unsuccessful joints.
These can be caused by inadequate heating of one part, or the other, of
the joint, due to the iron being too cool, or not having been in direct
contact with both parts; or to the process being performed too quickly. An
alternative cause might be contamination of the unsoldered surface.

Re-making the Joint Place the 'wetted' iron against the unsatisfactory
joint, the solder will then be mostly drawn off. Re-solder the joint. If
contamination is the problem it will usually be eliminated after further
applications by the flux incorporated within the solder.

Solder 'Bridges'—can be formed between adjacent tracks on the printed
circuit in various ways: —

(i) too cool an iron allowing the molten solder to be slightly tacky
(ii) excessive solder applied to the joint
(iii) bit moved away from the joint near the surface of the board instead

of directly upwards
These bridges are sometimes extremely fine and hard to detect, but are
easily removed by the tip of the cleaned soldering iron bit.

Solder Splashes—can also cause unwanted short circuits. Careless
shaking of excess solder from the bit, or allowing a globule of solder to
accumulate on the bit, must be avoided. Splashes are easily removed with
the iron.

In summary, soldering is a minor manual skill which requires a little
practise to develop. Adherence to the above notes will help a satisfactory
result to be achieved.

4Power Connect
and Switch On

The MK1 4 operates from a 5V stabilised supply. The unit incorporates its
own regulator, so the user has to provide a power source meeting the
following requirements: —

Current Basic kit only: 400mA
consumption + R A M option: 4- 50mA

+ extra RAM option: +30mA
Max l/P permitted voltage (including ripple) 35V
Min l/P permitted voltage (including ripple) 7V

Batteries or a mains driven power supply may be used. When using
unregulated supplies ensure that ripple at the rated current does not
exceed the l/P voltage limits.
If a power source having a mean output voltage greater than IOV has to be
used, a heat sink must be fitted to the regulator. A piece of aluminium or
copper, approx. 1 8 s.w.g., of about two square inches in area, bolted to
the lug of the regulator should permit input voltages up to about 1 8V to
be employed.
Alternatively a suitable resistor fitted in series with the supply can be used.
To do this the value of the series resistor may be calculated as follows:-

2 x (minimum value l/P voltage-7) a
Resistor dissipation will be 0 .5W/«

Having selected a suitable power supply the most important precaution to
observe is that of correct polarity. Connect power supply positive to
regulator l/P and power supply negative to system ground.
Switch on.
Proper operation is indicated by the display showing this: —

The left-hand group of four digits is called the address field and the right-
hand group is the data field.
If this works—congratulations!
Before proceeding to the next section on operating the MK14 you should
first tie the SENSE-A input to ground (unless you are using the single-step
circuit). This involves linking pin 5 to pin 26 on the top edge connector.

^ Monitor Operation

To help the user become accustomed to commanding and interrogating
the MK1 4 an exercise consisting basically of a sequence of keyboard
actions, with the expected display results, and an explanatory comment,
is provided.
Readers who are not familiar with hexadecimal notation and data
representation should refer to section 7.
It will be clear to those who have perused the section dealing with MK14
basic principles that to be able to utilise and understand the unit it is
necessary firstly to have the facility to look at the contents of locations in
memory I/O and registers in the CPU, and secondly to have the facility to
change that information content if desired.
The following shows how the monitor program held in fixed memory
enables this to be done.

Examining Memory

Operator Display
Action

Reset

MEM

0000 00

0001 CF

Comment

The contents of memory location zero are
are displayed in the data field.

Next address in sequence is displayed, and the
data at that address.

MEM 0002 FF Address again incremented by one, and the
data at the new address is displayed.

MEM 0003 90 Next address and contents are displayed

The user is actually accessing the beginning of the monitor program
itself. The items of data 00, CF, FF, 90 are the first four instructions in the
monitor program.
It is suggested that for practise a list of twenty or thirty of these is made
out and the appropriate instruction mnemonics be filled in against them
from the list of instructions in Section 9. Additionally, this memory
scanning procedure offers an introduction to the hexadecimal numbering
method used by the addressing system, as each MEM depression adds
one to the address field display.

Loading Memory

Note: symbol X indicates when digit value is unpredictable or unimportant.

Operator
Action

Display

0 0000 XX

F 000F XX

1 00F1 XX

2 0F12 XX

TERM 0F1 2 XX

1 0F1 2 01

MEM 0F13 XX

1 0F13 01

1 0F13 1 1

MEM 0F14 XX

22 0F14 22

MEM 0F1 5 XX

33 0F1 5 33

MEM 0F16 XX

Operator
Action

Display

ABORT 0F1 6 44

0F12 0F1 2 01

MEM 0F13 1 1

MEM 0F14 22

MEM 0F15 33

MEM 0F1 6 44

Comment

First digit is entered to address field, higher
digits become zero.

Second address digit keyed enters display from
right.

Third address digit keyed enters display from
right.

This is first address in RAM available to the user
(basic version of kit).

TERM changes to 'data-entry' mode.

Data placed in RAM.

Address is incremented.

New data.

is keyed and placed in RAM.

Data

is
loaded
into
successive
locations

Comment

Get back into 'address-entry' mode.
Enter original memory address and

check that data

remains as

was

loaded.

Switch power off and on again. Re-check contents of above locations.
Note that loss of power destroys read-write memory contents.
Repeat power off/on and re-check same locations several times—it is
expected that RAM contents will be predominately zero, and tend to
switch on in same condition each time. This effect is not reliable.

Entering and Executing a Program

Operator Display Comment
Action

Reset 0000 00
0, F, 2 , 0 0F20XX Enter program starting at 0F20
TERM 0F20 XX
9 , 0 0F20 90
MEM 0F21 XX
F,E 0F21 FE
ABORT 0F21 FE
0, F, 2, 0 0F20 90 Enter start address
GO blank commence execution

The program consists of one instruction JMP-2 (90FE in machine code).
90 represents the jump operation; FE represents -2, meaning back two
locations.
If this exercise failed to work you may have omitted to join the SENSE-A
input to ground. See Section 4 again.

We have created the most elementary possible program—one that loops
round itself. There is only one escape—RESET which will force the CPU to
return to location 0.

RESET 0000 00 Reset does not affect memory the instruction
JMP— 2 is still lurking to trap the user.

Monitor Operation Summary
TERM —Change to 'data entry' mode
MEM —Increment memory address
ABORT —Change to 'address entry' mode
GO —Execute program at address displayed

Note that the value displayed in the data field is the actual data at the
location addressed, so an attempt to enter data into ROM will have
no effect.

MK14 Schizophrenia
The exercises above illustrate a fundamental aspect of the MK1 4. While
the user is entering commands and data through the keyboard and
observing responses on the display the CPU is executing the monitor
program which resides in the fixed data memory area. This is so,
notwithstanding the fact that data values may be read and written in other
parts of memory. All instructions are being derived from the monitor.

However as soon as GO command is entered, in conjunction with an
address elsewhere in memory, the CPU is made to execute alternative
program, and the characteristics of the system can be totally transformed.
Thus an MK1 4 can have as many personalities as it can have different
program in memory.
When in user program the MK1 4 is utterly "unaware" of the existence
of the monitor, but the monitor does "know" certain basic data
concerning the user program and the only bridge between monitor and
user program is the GO command.

Specifying Register Contents
On transferring control from the monitor to your own program the CPU
registers (except P3) are loaded from the block of read/write memory
locations OFF9-OFFF. By modifying the contents of these locations you
can specify the initial contents of the CPU registers before your program
is executed.
Pointer register P3 is not saved alongside the other registers since it is
used to hold the address for returning to the monitor program.

0FF9 P1H
OFFA P1L
OFFB P2H
OFFC P2L
OFFD A
OFFE E
OFFF S

Fig. 5.1 Image of CPU Registers in Read/Write Memory.

14

Inserting Breakpoints
The instruction:

X'3F (mnemonic XPPC 3).
if encountered in a program will cause an orderly return to the monitor.
When control is returned to the monitor in this way the current contents
of the SC/MP registers are copied out into the block of read/write memory
0FF9-0FFF. Using the monitor 'memory examine' function you can then
inspect this image of the registers and find out what they contained when
the X'3F instruction was encountered.

Single-Step
The single-step facility allows you to step through a program being
debugged, executing it a single instruction at a time, the next address
and op-code being displayed after each step.
Some additional hardware is needed to implement the single-step facility;
this is contained in two TTL packages, a 7493A binary counter, and a
7400 quad two-input NAND gate package. The circuit is shown in
Fig. 5.1.

DB7
TOP
EDGE

CONNECTOR

NADS

SENSE-A
NORMAL O

7400 pin 7 = GND I
pin 14 = +5V —

Fig. 5.1. Circuitry needed to implement single-step.

Note: the 7493 is also suitable but has a different pin-out.

Operation is as follows:
With the switch in 'NORMAL' position the monitor behaves as
described previously. With the switch in 'SS' position pressing 'GO' will
go to the program at the address displayed, but wil l only cause one
instruction to be executed — the display will then show the next

instruction and address. Repeatedly pressing 'GO' will step through the
program. In between steps the contents of the user's registers, stored in
RAM at OFF9 — OFFF, can be examined or altered using the monitor in
the usual way. The switch may be returned to 'NORMAL' at any time;
the next time 'GO' is pressed, the program will be executed in the
normal way.
The single-step facility will appear to step over XPPC 3 instructions
when encountered (X'3F) since they reverse the effect of the interrupt
used for single-stepping. The single-step program will also behave
strangely when used to step over HALT instructions (X'OO), since the
HALT flag is used by the single-step program.

Offset Calculation
The offset-calculation program is located at 0093 in the monitor, and it
saves you the trouble of calculating jump operands.
Suppose we had the following program
0FC9 C400 LOOP: LDI 0

0FD4 9CXX JNZ LOOP
Where XX is to be determined. We use the offset program as follows:
1. Put the jump instruction address in (0FF9, 0FFA), in this case

0FD4.
2. Put the destination address in (0FFB, 0FFC), in this case 0FC9.
3. Enter the address 0093 and press 'GO'.
4. The program will insert the correct value of XX into your program,

in this case F3.

Tape Interface Routines
The tape routines form a simple system for storing programs or data on a
tape recorder and then reloading them anywhere in RAM memory.
Programs can be relocated if they use suitable addressing modes.

The 'store to tape' program at 0052 converts a program or data to a
series of long and short pulses. The 'load from tape' program at 007C
reads back pulses in the same format and converts them back to the
original binary data.
To convert these pulses to audio-frequency tone-bursts suitable for
recording on a tape, and to convert the tone bursts back to pulses, the
Science of Cambridge Cassette Interface Module can be used—available
separately. This is shown in block form in Fig. 5.2.

16

MK14: TAPE RECORDER:

FLAG-0 INPUT

SENSE-B

SIN

OUTPUT

Fig. 5.2. Block Diagram of Cassette Interface Module.

Data Along a Serial Line
The tape interface routines can be used to transmit data or programs
along a serial line between two MK1 4s; see Fig. 5.3.

SENSE-B

• •

Fig. 5.3. Two MK1 4s communicating along a Serial Line.

Operation of the tape routines:

Writing to tape:
1. Put the number of bytes to be stored in location 0FF8.

This will be a hex number not exceeding 256 . If one wanted to
store seventy bytes one would enter 46.

(NB: to store the full 256 bytes one should enter 00).
2. Put the starting address of the program to be stored in 0FF9 and

OFFA (PI H and P1 L).
3. Go to 0052. The program will return to the monitor when the data

has been transmitted.

Reloading from tape:
1. Put the starting address of where the program on tape is to be

reloaded in OFF9 and OFFA (P1H and P1 L).
2. Go to 007C. The program should be stopped with Reset when

all the data has been read.
Monitor Subroutines
There are also routines in the monitor which may be used by one's own
programs—for more details see section 10 of the manual.

Addresses of Routines in the monitor
Offset calculation 0093
Store to tape 0052
Load from tape 007C
Make 4 digit address 011B
Data to segments 0140
Address to segments 01 5A
Display and keyboard input 0185

^^Basic Principles of the MK14

Essentially the MK1 4 operates on exactly the same principles as do all
digital computers. The 'brain' of the MK1 4 is a SC/MP micro-processor,
and therefore aspects of the SC/MP will be used to illustrate the following
explanation. However the principles involved are equally valid for a huge
machine from International Computers down to pocket calculators.
Moreover, these principles can be stated quite briefly, and are essentially
very simple.
'Stored Program' Principle

The SC/MP CPU (Central Processing Unit) tends to be regarded as the
centre-piece because it is the 'clever' component—and so it is. But by
itself it can do nothing. The CPU shows its paces when it is given
INSTRUCTIONS. It can obey a wide range of different orders and perform
many complex digital operations. This sequence of instructions is termed
the PROGRAM, and is STORED in the MEMORY element of the system.
Since these instructions consist of manipulation and movement if data, in
addition to telling the CPU what to do, the stored program contains
information values for the CPU to work on, and tells the CPU where to get
information, and where to put results.
Three Element System
By themselves the two fundamental elements CPU and MEMORY can
perform wondrous things—all of which would be totally useless, since no
information can be input from the outside world and no results can be
returned to the user. Consequently a third element has to be incorporated
- t h e INPUT/OUTPUT (I/O) section.

Fig. 6.1 The Three Element System

1/0 CPU Memory

These three areas constitute the HARDWARE of the system, so called
because however you may use or apply the MK1 4, these basic structures
remain the same.
Independence of Software (stored Program) and Hardware
As with the other hardware, whatever particular instruction sequence is
present within the memory at any one time, the basic structure of the
memory element itself is unaltered.
It is this factor which gives the MK1 4 its great versatility: by connecting
up its I/O and entering an appropriate program into its memory it can
perform any digital function that can be contained within the memory
and I/O size.
Random Access Memory (RAM)
Further, when the memory in question consists of a read and write
element (RAM), in contrast to read only memory (ROM), this flexibility
is enhanced, as program alterations, from minor modifications, to
completely different functions, can be made with maximum convenience.

Interconnection of Basic Elements
Element inter-connection is standardised as are the elements themselves.
Three basic signal paths, ADDRESS BUS (ABUS), DATA BUS (DBUS)
and CONTROL BUS, are required.

Fig. 6.2 Interconnections of Three Element System

Data Bus.

These buses are, of course, multi-line. In the MK1 4 the Abus= 1 2 lines,
Dbus = 8 lines and Control bus = 3 lines. Expansion of memory or I/O
simply requires connection of additional elements to this basic bus
structure.
MK14 System Operation
Consider the MK1 4 with power on and the RESET signal applied to the
SC/MP. This forces all data inside the CPU to zero and prevents CPU
operation.
When the RESET is released the CPU will place the address of the first
instruction on the Abus and indicate that an address is present by a signal
on the ADDRESS STROBE (NADS) line which is within the control bus.
The memory will then respond by placing the first instruction on the Dbus.
The CPU accepts this information and signals a READ STROBE (NRDS) via
a line within the control bus.
The CPU now examines this instruction which we will define as a no-
operation, (instructions are normally referred to by abbreviations called
MNEMONICS, the mnemonic for this one is NOP).
In obedience the CPU does nothing for one instruction period and then
sends out the address of the second instruction. The memory duly
responds with a Load Immediate (LDI). The CPU interprets this to mean
that the information in the next position, in sequence, in memory will not
be an instruction but an item of data which it must place into its own main
register (ACCUMULATOR), so the CPU puts out the next address in
sequence, and when the memory responds with data, then obeys the
instruction.
The CPU now addresses the next position (LOCATION) in memory and
fetches another instruction—store (ST). This will cause the CPU to place
the data in the accumulator back on the Dbus and generate a WRITE
STROBE (NWDS) via the control bus, (The program's intention here
is to set output lines in the I/O element to a pre-determined value).
Before executing the store instruction the CPU addresses the next
sequential location in memory, and fetches the data contained in it. The
purpose of this data word is to provide addressing information needed,
at this point, by the CPU.
So far, consecutive addresses have been generated by the CPU in order
to fetch instructions or data from memory. In order to carry out the store

20

instruction the CPU must generate a different address, with no particular
relationship to the instruction address itself, i.e. an address in the I/O
region:
The CPU now constructs this address using the aforementioned data
word and outputs it to the Abus. The I/O element recognises the address
and accepts the data appearing on the Dbus (from the CPU accumulator),
when signalled by the writer strobe (NWDS), also from the CPU.
Now the CPU reverts to consecutive addressing and seeks the next
instruction from memory. This is an Exchange Accumulator with
Extension register (XAE) and causes the CPU to simultaneously move the
contents of the accumulator into the extension (E) register, and move
the contents of the extension register into the accumulator. The
programmer's intention in using this instruction here, could be to preserve
a temporary record of the data recently written to the I/O location.
No new data or additional address information is called for, so no second
fetch takes place. Instead the CPU proceeds to derive the next instruction
in sequence.
For the sake of this illustration we will look at a type of instruction which is
essential to the CPU's ability to exhibit intelligence.
This is the jump (JMP) instruction, and causes the CPU to depart from the
sequential mode of memory accessing and 'jump' to some other location
from which to continue program execution.
The JMP will be back to the first location.
A JMP instruction requires a second data word, known as the
DISPLACEMENT to define the distance and direction of the jump.
Examining the memory I/O contents map, Fig. 6.3, shows location 0 to
be seven places back from the JMP displacement which therefore must
have a numerical value equivalent to—7. (Detail elsewhere in this manual
will show that this value is not precisely correct, but it is valid as an
example).
The instruction fetched after executing the JMP will be the NOP again.
In fact the sequence of five instructions will now be reiterated continually.
The program has succumbed to a common bug —an endless loop, in
which for the time being we will leave it.

Fig. 6.3 Map of Memory Location Contents.

LOCATION No. LOCATION CONTENTS
0 NOP (instruction)
1 LDI (instruction)
2 data (for use by LDI)
3 ST (instruction)
4 address information (for use by ST)
5 XAE (instruction)
6 JMP (instruction)
7 - 7 (displacement for JMP)

Formed by
CPU using
data in loc. 4

Initially undefined-after 3 becomes
same as loc. 2

MEMORY
REGION

1/0 REGION

21

This brief review of a typical sequence of MK1 4 internal operations has
emphasised several major points. All program control and data derives
from the memory and I/O. All program execution is performed by the CPU
which can generate an address to any location in memory and I/O, and
can control data movement to or from memory and I/O.
Some instructions involve a single address cycle and are executed within
the CPU entirely. Other instructions involve a second address cycle to
fetch an item of data, and sometimes a third address cycle is also needed.
For the sake of simplicity this outline has deliberately avoided any detail
concerning the nature of the instruction/data, and the mechanics of the
system. These subjects are dealt with in greater depth in sections 7 and 9.

7MK14 Language-Binary
and Hexadecimal

Discussion of the MK1 4 in this handbook so far has referred to various
categories of data without specifying the physical nature of that data. This
approach avoids the necessity of introducing too many possibly unfamiliar
concepts at once while explaining other aspects of the workings of
the system.
This section, then, gives electrical reality to the abstract forms of
information such as address, data, etc., which the computer has to
understand and deal with.
Binary Digit Computers use the most fundamental unit of information
that exists—the binary digit or BIT—the bit is quite irreducible and
fundamental. It has two values only, usually referred to as '0 ' and ' 1'.
Human beings utilise a numbering system possessing ten digits and a
vocabulary containing many thousands of words, but the computer
depends on the basic bit.
However, the bit is readily convertible into an electrical signal. Five volts
is by far the most widely used supply line standard for electronic logic
systems. Thus a zero volt (ground) level represents '0 ' , and a positive five
volt level represents ' 1'. Note that the SC/MP CPU follows this convention
which is known as positive logic; negative logic convention determines
inverse conditions.
Logic Signal Voltage Limits For practical purposes margins must be
provided on these signal levels to allow for logic device and system
tolerances. Fig. 7.1 shows those margins.

Fig. 7.1
5 VOLT LEVEL

Margin for
logic '1 ' signal

Margin for
logic '0 ' signal

Margin for
logic '1 ' error
Ambiguous area
Margin for
logic '0 ' error

0 VOLT
LEVEL

logic device logic device
output input

'O's and '1 's Terminology Many of the manipulation rules for 'O's and
' 1 's are rooted in philosophical logic, consequently terms like 'true' and
'false' are often used for logic signals, and a 'truth table' shows all
combinations of logic values relating to a particular configuration. The

control engineer may find 'on' and 'off' more appropriate to his
application, while an electronic technician will speak of 'high' and 'low',
and to a mathematician they can represent literally the numerals one
and zero.
Using Bits in the MK14 The two state signal may appear far too limited
for the complex operations of a computer, but consider again the basic
three element system and it's communication bus.

Fig. 7.2
3 lines

1 2 lines A bus

The data bus for example comprises eight lines. Using each line separately
permits eight conditions to be signalled. However, eight lines possessing
two states each, yield 256(2 ') combinations, and the A bus can yield
4096 combinations.
A group or WORD of eight bits is termed a BYTE
The Special K'
In computerese K is frequently used as a measure of memory size, or of
the amount of memory space taken up by items of software. It is equal to
1024 (which is 21 0) .
64K of memory actually contains over 65 ,000 locations, and is therefore
sometimes termed 65K.
In relation to the SC/MP CPU and the MK14 the SC/MP has the capability
to address a 64K (65536) memory, but the MK14 configuration utilises
4K (4096) out of this total. The monitor program occupies '/2K (51 2)
locations and the basic RAM and optional RAM each consist of % K
(256) locations.
Decoding In order to tap the information potential implied by the use of
combinations, the elements in the MK1 4 all possess the ability to
DECODE bit combinations. Thus when the CPU generates an address,
the memory I/O element is able to select one out of 409 6 locations.
Similarly, when the CPU fetches an instruction from memory it obeys one
out of 1 28 possible orders.
Apart from instructions, depending on context, the CPU treats information
on the data bus sometimes as a numerical value, or sometimes simply
as an arbitrary bit pattern, thereby further expandi ng data bus information
capacity.
Bits as Numbers When grouped into a WORD the humble bit is an
excellent medium for expressing numerical quantities. A simple set of
rules exist for basic arithmetic operations on binary numbers, which
although they lead to statements such as 1 + 1 = 10, or 2 , 0 and 2 , 0
make 1002 , they can be executed easily by the ALU (Arithmetic and Logic
Unit) within the CPU. Note that the subscripts indicate the base of the
subscripted numbers.

Binary Numbers The table below compares the decimal values 0—15
with the equivalent binary notation.

Decimal Binary
0 0 0 0 0
1 0001
2 0 0 1 0
3 001 1
4 0 1 0 0
5 0101
6 01 10
7 01 1 1
8 1000
9 1001
10 1010
1 1 101 1
12 1 100
13 1 101
14 1110
15 1111

Most
significant
digit (MSD)

Least
significant
digit (LSD)

8 4 2 1

1000 s 100 s 10s 1s

Place values in binary and
decimal systems

Fig. 7.3

BINARY

DECIMAL

The binary pattern is self evident, and it can also be seen how place value
of a binary number compares with that in the decimal system.
Expressed in a different way, moving a binary number digit one place to
the left doubles its value, while the same operation on a decimal digit
multiplies its value by ten.
Binary Addition—requires the implementation of four rules: —

0 + 0 = 0
0 + 1 or 1 + 0 = 1

1 + 1 = 1 with carry (to next higher digit)
1 + 1 + carry (from next lower digit) = 1 with carry (to next higher digit)

Example:- 1110110
+ 1 0 1 0 1 0 1
11001011
111 1
y v v v —carry indications

Addition within the Computer
The working data unit of the SC/MP micro-processor is an eight bit word.
The Arithmetic and Logic Unit (ALU) within the SC/MP can form the sum
of two eight bit words according to the rules described above. The sum is
always deposited in the Accumulator (AC) register following an arithmetic
instruction.
Two eight bit numbers may generate a nine bit sum, so a ninth bit is
provided. This is referred to as the Carry/Link bit, and is physically located
in the leftmost position of the Status register. It has, however, no direct
relation with any other part of the Status register which is really an
assemblage of independent bits which may be moved as a unit for various
purposes. The term 'link' in the bit name refers to a different function
which will be explained elsewhere.

When the SC/MP executes an arithmetic instruction the initial condition of
the Carry/Link bit is treated as a carry into the low order (least significant
bit) of the sum. When the instruction is complete the Carry/Link bit
assumes the value of the carry out from the most significant, or high
order, bit of the sum, refer to Fig. 7.4.

STATUS

CY/L

ACCUMULATOR

MSB LSB

LSB = Least Significant Bit
MSB = Most Significant Bit

Fig. 7.4. Status register and Inter-actlon CY/L bit with AC in Add
Operations

There are two instructions available which control the CY/L bit apart from
arithmetic and shift operations. They are Set Carry/Link
(mnemonic = SCL), and Clear Carry/link (mnemonic = CCL) which set the
Carry/Link to '1 ' and '0 ' respectively.

Binary Subtraction
0 - 0 = 0
1 - 1 = 0
1 - 0 = 1
0— 1 = 1 with borrow (from next higher digit)
0— 1 —borrow (from next lower digit) = 1 with borrow (from next
higher digit) 07i o i o i ^ borrow
Examples:— / 0 1 /£>0 110 indications

- 0 1 0 - 0 0 1 - 0 1 1
011 011 011

Subtraction by Addition in the Computer
The logic which would be required to implement the subtraction rules
stated previously is not built into the ALU. Instead, subtraction is carried
out using the add capability, in conjunction with an ability to form a logical
complement. That is, to operate on a binary word such that' 1 's are
changed to 'O's, and 'O's are changed to ' 1 's.
Consider a four bit binary value. Fig. 7.5. Adding the complement of the
value to the value itself will always generate all ' 1 's, the further addition of
1 will generate all 'O's, with a carry from the high order bit.

Value 1010
Complement 0101 +

1111
1 + Fifl. 7.5.

10000

Two's Complement
If we overlook the carry in the result, the complement of a binary value
plus one can be regarded as a negative quantity of equivalent size, and is
known as the Two's Complement.
The SC/MP CPU possesses a Complement and Add (mnemonic = CAD)
instruction which therefore contributes to a subtract function. By utilising
the property of CY/L bit as defined earlier, the requisite additional one can
be provided.
If the program ensures that the CY/L bit is initially set, the CAD instruction
will automatically generate a correct result.
A further difficulty remains. What is to be done when the net result of a
subtraction is negative? The four bit word in the example offers no
indication of sign. The answer rests with the CY bit. Fig. 7 .6 shows that
when the result is positive or zero the CY will be set, and when it is
negative the CY will be clear.

a) 1010—101 1 b) 1010—1011 c) 1 0 1 0 - 1 0 0 1

Fig. 7.6 Subtraction Operations and State of the Carry
The behaviour of the CY bit lends itself equally conveniently to multiple
precision subtraction, where it takes on the character of a borrow. Since a
negative result is accompanied by a clear CY bit, a following CAD will yield
a result smaller by one, thus implementing a borrow.
The principle remains valid when a subtraction is made from a negative
value—the result is also a two's complement negative number.

Multiple Precision Arithmetic
This rather grandiose phrase simply means performing arithmetic on
words larger than the CPU accumulator. An operation which is made easy
by the dual function of the CY/L bit, ie the ability to represent the carry in,
before an add instruction and the carry out, subsequently.
Clearly providing the programmer arranges for arithmetic operations on
large words to commence with the lowest order eight bit word or byte, all
carries arising between bytes will be correctly propagated.
Equally clearly, the programmer must ensure that the CY/L is initially in the
appropriate state by use of the SCL or CCL instructions.

Hexadecimal Numbers
The "O 's " and " 1 ' s " which make up binary words are unwieldy and
long-winded to handle. Hexadecimal notation is a convenient means of
compacting these binary words and is used widely in the context of micro-
processor and digital systems in general.

1010
+ 0101

1111
+ 1
1 0000

1010
+ 0100

1110
+_ 1
01 1 1 1

1010
+ 0110
1 0000

0001
1 0001

Each group of four bits in a binary word is reduced to a single digit. Since
there are sixteen combinations of four bits, sixteen characters are used;
the ten decimal numerals and six alphabetic characters.

Fig. 7.7 lists hexadecimal characters against the equivalent binary codes.
To identify a hexadecimal value when written, the convention " X " is used
as a prefix.
In some of the applications programs the alternative convention of
prefixing the number with a zero is used; e.g. 07F (=X'7F).
Two examples of hexadecimal usage taken from the MK14 monitor
program listing are given in Fig. 7.8.
i) X'018B Hexadecimal location address

0000 0001 1000 1101 Location address in binary

395 Location address in decimal derived from

ii) X '35 Hexadecimal location contents

0011 0101 Location contents in binary
XPAH 1 Equivalent instruction mnemonic

Fig. 7.8 Examples of the Hex Notation

B.C.D. Numbers
Binary Coded Decimal Notation is a means of expressing the ten decimal
digits in binary code by directly converting each decimal digit into a four
bit binary group. Fig. 7.9 compares decimal and B.C.D.
B.C.D. is really a sub-set of hexadecimal which discards the six highest
order binary combinations. This convention is employed so as to retain the
digits of a decimal number as separate entities, and to avoid converting
the decimal value to pure binary.
The SC/MP CPU can perform an addition of two 2 digit B.C.D. words to
generate a correct B.C.D. result. This is the DAD (Decimal add
instruction).

Fig. 7.7

BINARY
0000
0001
0010
001 1
0100
0101
0110
01 1 1
1000
1001
1010
101 1
1 100
1 101
1110
1111

HEXADECIMAL
0

2
3
4
5
6
7
8
9
A
B
C
D
E
F

1 (16x161 + 8(161+11

28

An eight bit B.C.D. word can express the decimal values 0 — 99. The
convenience that B.C.D. offers, i.e. that of allowing the programmer to
use decimal data within the processor in the same format as the outside
world data, has to be offset against the greater capacity (0 —2551 0) of
the binary word.

Fig. 7.9

B.C.D.
0000
0001
0010
001 1
0100
0101
01 10
011 1
1000
1001

Decimal
0

2
3
4
5
6
7
8
9

Program Notes

At the point the reader is likely to be considering the a pplication programs
in Part II and perhaps devising some software of his own. This section
examines the manner in which a program is written and set out, the
planning and preparation of a program, and some basic techniques.
When embarking on a program two main factors should be
considered, they are: (i) hardware requirements, (ii) sequence plan.
Hardware Requirements An assessment should be made of the amount
of memory required for the instruction part of the program, and the
amount needed for data storage. In a dedicated micro-processor system
these will occupy fixed, and read-write memory areas respectively. In the
MK1 4, of course, all parts of the program will reside in read-write
memory, simplifying the programmers task considerably, since local pools
for data can be set up indiscriminately.
However, even in the MK1 4 more care must be given to the allocation of
memory space for common groups of data and for input/output needs.
The SC/MP C.P.U. offers a certain amount of on-chip input/output in
terms of three latched flags, two sense inputs, and the serial in/serial out
terminals. So the designer must decide if these are more appropriate to
his application than the memory mapped I/O available in the RAMIO
option.
Memory Map A useful aid in this part of the proces® is the memory map
diagram which gives a spatial representation to the memory and I/O
resources the programmer has at his disposal. Fig. 8.1 shows the MK1 4
memory map including both add-in options

8

Standard R A M -

Optional RAM-»-

256
I/O locations

51 2 locations

Fig. 8.1

RAM
RAMIO
DISPLAY
RAMIO
RAM
RAMIO
DISPLAY
RAMIO
MONITOR
MONITOR
MONITOR
MONITOR

The map displays the memory as a column of
4K locations, (in this case each of eight bits),
with location zero at the base and addresses
ascending upwards.
The reader may be surprised that various
sections of memory appear to reside in several
areas at once.
For example the monitor is repeated four
times in the lower 2K block. Note also that the
monitor will only operate correctly if executed
in the lowest section, as only this section has
the proper relationship to the RAM at the top.

These multiple appearances of memory blocks are due to partial address
decoding technique employed to minimise decode components.
The map readily indicates that a CPU memory pointer (which can permit
access to a block of 256 I/O locations) set to 0 9 0 0 , , would give the
program a stepping stone into the display O/P or the RAMIO facilities.

30

Flow Chart The flow chart provides a graphical representation of the
sequence plan. A processor is essentially a sequential machine and the
flow chart enforces this discipline. Fig. 8.2 is a very simple example of a
program to count 1 00 pulses appearing at an input. Three symbols are
used (i) the circle for entry or exit points (ii) the rectangle for program
operations (iii) the diamond for program decisions.
A flow chart should always be prepared when constructing a program.
Each block is a convenient summary of what may be quite a large number
of instructions. Of particular value is the overview provided of the paths
arising from various combinations of branch decisions.

The flow chart can reveal wasteful repetition or logical anomalies, and
ensures that like a good story, the program starts at the beginning,
progresses through the middle, and comes to a satisfactory end.

Program Listings
There is a well established convention and format for writing down a
program listing which makes it much easier to understand than a list of the
hex codes would be.
The application program listings at the end of this manual are given in this
symbolic form known as 'assembler listings'.
We will examine a line from the monitor listing to define the various
functions of the notation:

(a)

(a) (b) (c) (d) (e) (f) (g) (h)
0001 CFFF INIT: ST @ - 1 (3) ;SOP3 = -1

a) Location Counter. The current value of the location counter (program
counter in the CPU) is shown wherever it is relevant e.g. when the
line contains a program instruction or address label.

b) Machine Code. The actual code in the memory is shown here. As it
is a two byte instruction the first two hexadecimal digits CF are in
location 1 and FF is in location 2.

c) Symbolic Address Label. This is followed by a colon. Entry points to
sub-sections of program can be labelled with meaningful
abbreviations making the program easier to follow manually e.g. at
some other place in the program a JUMP TO 'INIT' might occur.
Automatic assemblers create an internal list of labels and calculate
the jump distances.
However the MK1 4 user must do it by hand or with the offset-
calculation program (see Section 5).

d) Mnemonic ST means STORE. The basic op-code for ST is C8.
e) The symbol represents auto-indexed addressing; 4 is added to

the basic op-code.

f) Displacement, or disp., in this case— 1 or FF, forms the second byte
of the instruction. Could alternatively be a symbolic name, in which
case its value is calculated during assembly.

g) Pointer designation; specifies that P3 is to be referenced by this
instruction. The pointer number is added to the basic op-code:
C8 + 4 + 3=CF(seed above).

h) Comment. All text following the semi-colon is explanatory material to
explain the purpose of the instruction or part of programme.

Assembler conventions
In assembler listings the op-codes are represented by mnemonic names
of from 2 to 4 letters, with the operands specified as shown:
LDdisp ;PC-relative addressing
LDdisp(ptr) ;lndexed addressing
LD @ disp (ptr) ;Auto-indexed addressing

32

Constants and addresses are also sometimes represented by names of up
to six letters; these names stand for the same value throughout the
program, and are given that value either in an assignment statement, or
by virtue of their appearing as a label to a line in the program. Some
conventions used in these listings are shown below:

Directive statements
Assembler Format Function

END (address)

BYTE exp(,exp...)

DBYTE exp (,exp,...)

Signifies physical end of
source program.

Generates 8-bit (single-byte)
data in successive memory
locations.

Generates 1 6-bit (double-
byte) data in successive
memory locations.

Assignment statements

LABEL: SYMBOL= EXPRESSION ;Symbol is assigned
;value of expression

. = 20 ;Set location counter
;to 20

TABLE: . = . + 1 0 ; Reserve 10 locations
for table

Loading Application Programs
These points will be illustrated with reference to the following short
program.

; LONG DELAYS

OOFF TIME - X'FF
0000 . = 0F20
0F20 COUNT: . = . + 1

0F21 8FFF BEGIN: DLY TIME
0F23 A8FC ILD COUNT
0F25 9CFA JNZ BEGIN
0F27 3F XPPC 3

0000 .END

The leftmost column in the assembler listing is the address field;
the next field is the data field. Where both a four-digit address and two
digits of data are given, as in XPPC 3 above, the data shown should be
entered into the memory at the specified address. When a four-digit
address and four digits of data are given, as in DLY TIME above, the first
two digits of data should be entered at the specified address, and the last
two digits of data should be entered at the subsequent address.

There are two cases in the assembler listing where nothing needs to be
entered into memory. The first is when only a data field is present, as in
the assignment statement TIME = X'FF above. The value in the data field
shows the value assigned to the symbol concerned (TIME in this case).
The directive .END generates 0000 in the data field and simply specifies
the end of the program. The second case is where only the address field is
present; there are two examples in the above program. In the assignment
statement. = 0F20 the location counter, symbolised by a dot, is set to the
value of 0F20; its previous value, zero, is shown in the address field. If a
label is attached to such an assignment statement, as in COUNT . = . + 1,
the label gets the previous value of the location counter so that COUNT
stands for the memory location 0F20 in this program.
BYTE Statements
In the programs 'Function Generator', 'Music Box', and 'Message' the
values specified in the BYTE directive statements should be loaded into
successive memory locations starting at the address shown in the address
field for each statement. In the 'Reaction Timer' the .DBYTE statements
specify two bytes which should be loaded into the locations starting at the
address shown in the address field.

9Architecture and
Instruction Set

The SC/MP microprocessor contains seven registers which are accessible
to the programmer. The 8-bit accumulator, or AC, is used in all
operations. In addition there is an 8-bit extension register, E, which can
be used as the second operand in some instructions, as a temporary
store, as the displacement for indexed addressing, or in serial input/
output. The 8-bit status register holds an assortment of single-bit flags
and inputs:

SC/MP Status Register
7 6 5 4 3 2 1 0

CY/L OV SB SA IE F 2 F1 FO

Flags Description
F0-F2
IE
SA,Sb

OV
CY/L

User assigned flags 0 through 2.
Interrupt enable, cleared by interrupt.
Read-only sense inputs. If IE = 1, Sa is interrupt
input.
Overflow, set or reset by arithmetic operations.
Carry/Link, set or reset by arithmetic operations or
rotate with Link.

The program counter, or PC, is a 1 6-bit register which contains the
address of the instruction being executed. Finally there are three 1 6-bit
pointer registers, P1, P2, and P3, which are normally used to hold
addresses. P3 doubles as an interrupt vector.
Addressing Memory
All memory addressing is specified relative to the PC or one of the
pointer registers. Addressing relative to the pointer registers is called
indexed addressing. The basic op-codes given in the tables below are
for PC-relative addressing. To get the codes for indexed addressing the
number of the pointer should be added to the code. The second byte of
the instruction contains a displacement, or disp., which gets added to the
value in the PC or pointer register to give the effective address, or EA, for
the instruction. This disp. is treated as a signed twos-complement binary
number, so that displacements of from — 1 2 8 , 0 to + 1 2 7 1 0 c a n b e
obtained. Thus PC-relative addressing provides access to locations within
about 1 28 bytes of the instruction; with indexed addressing any location
in memory can be addressed.

Instruction Set

17 3 2 1 0 1
| Op m Ptr |

Memory Reference byte 1 byte 2

Mnemonic Description Operation
OpCode
Base

LD Load (AC)-(EA) COOO
ST Store (EA)-(AC) C800
AND AND (AC)-(AC) A (EA) D000
OR OR (AC)-(AC) V (EA) D800
XOR Exclusive-OR (AC)-(AC) V (EA) E000
DAD Decimal Add (AC)-(AC), o + (EA), o + (CY/L);(CY/L) E800
ADD Add (AC)—(AC) + (EA) + (CY/L);(CY/L),(OV) F000 1
CAD Complement and Add (AC)—(AC) + --(EA) + (CY/L);(CY/L),(0V) F800

Base Code Modifier
Op Code = Base + m + ptr + disp

Address Mode m Ptr disp Effective Address
PC-relative 0000 0 0 0 0 OOxx EA = (PC) + disp
Indexed 0000 0 1 0 0

0 2 0 0
0 3 0 0

OOxx EA = (ptr) + disp

Auto-indexed 0 4 0 0 0 1 0 0
0 2 0 0
0 3 0 0

OOxx If disp>0, EA = (ptr)
If disp<0,EA = (ptr) + disp

xx = — 1 28 to + 1 2 7
Note: If disp = — 1 28, then (E) is substituted for disp in calculating EA.

The operands for the memory reference instructions are the AC and a
memory address.
With these eight instructions the auto-indexed mode of addressing is
available; the code is obtained by adding 4 to the code for indexed
addressing. If the displacement is positive it is added to the contents of
the specified pointer register after the contents of the effective address
have been fetched or stored. If the displacement is negative it is added
to the contents of the pointer register before the operation is carried out.
This asymmetry makes it possible to implement up to three stacks in
memory; values can be pushed onto the stacks or pulled from them
with single auto-indexed instructions. Auto-indexed instructions can also
be used to add constants to the pointer registers where 1 6-bit counters
are needed.
A special variant of indexed or auto-indexed addressing is provided when
the displacement is specified as X'80. In this case it is the contents of
the extension register which are added to the specified pointer register
to give the effective address. The extension register can thus be used
simultaneously as a counter and as an offset to index a table in memory.

36

For binary addition the 'add' instruction should be preceded by an
instruction to clear the CY/L. For binary subtraction the 'complement'
and add' instruction is used, having first set the CY/L. Binary-coded-
decimal arithmetic is automatically handled by the 'decimal add'
instruction.

Immediate bY , e 1 bV t e 2

Mnemonic Description Operation Op Code
Base

LDI Load Immediate (AC)—data C400
ANI AND Immediate (AC)-(AC) A data D400

| ORI OR Immediate (AC)-(AC) V data DCOO
' XRI Exclusive-OR Immediate (AC)-(AC) V data E400

DAI Decimal Add Immediate I A O H A C I i o + data, 0 + (CY/L); (CY/L) ECOO
ADI Add Immediate (AC)—(AC) + data + (CY/L);(CY/L),(OV) F400
CAI Complement and Add (AC)—(AC) + ^da ta + (CY/L);(CY/L),(OV) FcOO

Immediate

Base Code Modifier

Op Code = Base + data

the immediate instructions specify the actual data for the operation in
the second byte of the instruction.

Extension Register
Op

|Mnemonic Description Operation OpCode

LDE Load AC from Extension (AC)—(E) 4 0
XAE Exchange AC and Ext. (AC)—(E) 01
ANE AND Extension (AC)—(AC) A (E) 50
ORE OR Extension (AC)—(AC) V (E) 58
XRE Exclusive-OR Extension (AC)—(AC) V (E) 60
DAE Decimal Add Extension (AC)—(AC),o + (E), o + (CY/L). (CY/L) 68
ADE Add Extension (AC)—(AC) + (E) + (CY/L); (CY/L), (OV) 70
CAE Complement and Add (AC)—(AC) (E) + (CY/L); 78

Extension (CY/L), (OV)

37

The extension register can replace the memory address as one operand in
the above two-operand instructions. The extension register can be loaded
by means of the XAE instruction.

1 7 . . . 21 [101

1 o P | Ptr |

Memory Increment/Decrement

I 7 0 |
I disp I

byte 1 byte 2

Mnemonic Description Operation Op Code
Base

ILD
DLD

Increment and Load
Decrement and Load

(AC), (EA)—(EA) + 1
(AC), (EA)—(EA) —1

Note: The processor retains control
of the input/output bus between the
data read and write operations.

A800
B800

Base Code Modifier

Op Code = Base + ptr + disp

Ptr disp Effective Address

0 1 0 0 OOxx EA = (ptr) + disp
0 2 0 0
0 3 0 0

xx= - 1 28 to + 1 27

The 'decrement and load' instruction decrements the contents of the
memory location specified by the second byte, leaving the result in the
accumulator. This provides a neat way of performing a set of instructions
several times. For example:

LDI 9
ST COUNT

LOOP:

DLD COUNT
JNZ LOOP

will execute the instructions within the loop 9 times before continuing.
Both this and the similar 'increment and load' instruction leave the CY/L
unchanged so that multibyte arithmetic or shifts can be performed with
a single loop.

38

Op ptr | | disp
Transfer byte 1 byte 2

2 10

Mnemonic Description Operation Op Code
Base

JMP Jump (PC)-EA 9000
JP Jump if Positive If (AC)^O, (PC)-EA 9400
JZ Jump if Zero If (AC) = 0, (PC)-EA 9800
JNZ Jump if Not Zero If (AC) # 0. (PC)-EA 9C00

Base Code Modifier

Op Code = Base + ptr + disp
Address Mode ptr disp Effective Address

PC-relative 0000 OOxx EA=(PC) + disp

Indexed 0100 OOxx EA = (ptr) + disp
0200
0300

xx = — 1 28 to + 1 27

Transfer of control is provided by the jump instructions which, as with
memory addressing, are either PC-relative or relative to one of the pointer
registers. Three conditional jumps provide a way of testing the value of
the accumulator. 'Jump if positive' gives a jump if the top bit of the AC is
zero. The CY/L can be tested with:
CSA ;Copy status to AC
JP NOCYL ;CY/L is top of bit status
which gives a jump if the CY/L bit is clear.

Pointer Register Move
17 . . . 2 I | 1 0 |
I Op ptr |

Mnemonic Descripton operation
OpCode
Base

XPAL Exchange Pointer Low (AC)~(PTFt7:°> 30
XPAH Exchange Pointer High (AO- IPTR, , : ,) 34
XPPC Exchange Pointer with PC (PC)—(PTR) 3C

Base Code Modifier

Op Code = Base + ptr

The XPAL and XPAH instructions are used to set up the pointer registers,
or to test their contents. For example, to set up P3 to contain X'1 234
the following instructions are used:
LDI X' 1 2
XPAH 3
LDI X'34
XPAL 3
The XPPC instruction is used for transfer of control when the point of
transfer must be saved, such as in a subroutine call. The instruction
exchanges the specified pointer register with the program counter,
causing a jump. The value of the program counter is thus saved in the
register, and a second XPPC will return control to the calling point. For
example, if after the sequence above an XPPC 3 was executed the next
instruction executed would be the one atX'1 235. Note that this is one
beyond the address that was in P3 since the PC is incremented before
each instruction. P3 is used by the MK1 4 monitor to transfer control to
the user's program, and an XPPC 3 in the user's program can therefore
be used to get back to the monitor provided that P3 has not been altered.

Shift Rotate Serial I/O t • 01

Mnemonic Description Operation Op Code

SIO Serial Input/Output (Ei)-(Ei-,), SIN-(E7) , (E0)-SOUT 19
SR Shift Right (ACi>—(ACi-,), 0—(AC7) 1C
SRL Shift Right with Link (ACil—IACi-,), CY/L)-*-(AC7) 1 D
RR Rotate Right (ACi)—(ACi-,), (AC0)-(AC7) 1 E
RRL Rotate Right with Link (ACi)—(ACi-,), <AC0>-(CY/L)-(AC7) • 1F

The SIO instruction simultaneously shifts the SIN input into the top bit of
the extension register, the bottom bit of the extension register going to the
SOUT output; it can therefore form the basis of a simple program to
transfer data along a two-way serial line. The shift afnd rotate with link
make possible multibyte shifts or rotates.

Double Byte Miscellaneous byte

0
Disp

byte 2

Mnemonic Description Operation
Op Code
Base

DLY Delay count AC to — 1,
•delay = 1 3 + 2(AC) + 2 disp +

2® disp microcycles

8F00

Base Code Modifier

Op Code = Base + disp

40

The delay instruction gives a delay of from 1 3 to 131 593 microcycles
which can be specified in steps of 2 microcycles by the contents of the
AC and the second byte of the instruction.
Note that the AC will contain X'FF after the instruction.

12 o
op

Single-Byte Miscellaneous '

Mnemonic Description Operation Op Code

HALT Halt Pulse H-flag 00
CCL Clear Carry/Link <CY/L)-0 02
SCL Set Carry/Link (CY/L)—1 03
DINT Disabled Interrupt (IE)—0 04
IEN Enable Interrupt (IE)—1 05
CSA Copy Status to AC (AC)—(SR) 06
CAS Copy AC to Status (SR)-(AC) 07
NOP No Operation (PC)—(PC) + 1 08

The remaining instructions provide access to the status register, and to
the IE and CY/L bits therein. The HALT instruction will act as a NOP in the
MK14 kit unless extra logic is added to detect the H-flag at NADS time,
in which case it could be used as an extra output. It is used in this way in
the single-step circuit; see Section 5.

i

41

Mnemonic Index of Instructions

Read i Write Total ,
Mnemonic Opcode Cycles Cycles Microcycles

ADD FO 3 0 19
ADE 70 1 0 7
ADI F4 2 0 1 1
AND DO 3 0 18
ANE 50 1 0 6
ANI D4 2 0 10
CAD F8 3 0 20
CAE 78 1 0 8
CAI FC 2 0 12
CAS 07 1 0 6
CCI 02 1 0 5
CSA 06 1 0 5
DAD E8 3 0 23
DAE 68 1 0 1 1
DAI EC 2 0 1 5
DINT 04 1 0 6
DLD B8 3 1 22
DLY 8F 2 0 13-131593
HALT 00 2 0 8
IEN 05 1 0 6
ILD A8 3 1 22
JMP 90 2 0 1 1
JNZ 9C 2 0 . 9, 1 1 for Jump
JP 94 2 0 9, 1 1 for Jump
JZ 98 2 0 9, 1 1 for Jump
LD CO 3 0 18
LDE 40 1 0 6
LDI C4 2 0 10
NOP 08 1 0 5
OR D8 3 0 18
ORE 58 1 0 6
ORI DC 2 0 10
RR 1 E 1 0 5
RRL 1 F 1 0 5
SCL 03 1 0 5
SIO 19 1 0 5
SR 1C 1 0 5
SRL 1 D 1 0 5
ST C8 2 1 18
XAE 01 1 0 7
XOR EO 3 0 18
XPAH 34 1 0 8
XPAL 30 1 0 8
XPPC 3C 1 0 7
XRE 60 1 0 6
XRI E4 2 0 10

^ W r i t i n g a Program

This section describes the operations involved in designing a program to
perform a specific task, and it is hoped that this will provide some
guidelines for user wishing to write their own programs. The task chosen
is the conversion of numbers from decimal to hexadecimal notation; the
result is to be displayed as each digit is entered. For example, to convert
127:

Entered: Displayed:
'TERM' 0 0 0 0
' 1 ' 0 0 0 1 (+ 1)
'2 ' 000C (+ 12)
'7 ' 007F (+ 1 2 7)

To convert negative numbers to signed twos-complement hexadecimal
notation the 'MEM' key will be used as a minus prefix. For example, to
convert—1 27:

Entered: Displayed:
'MEM' 0 0 0 0 (- 0)
T FFFF (- 1)
'2 ' FFF4 (- 1 2)
'7 ' FF81 (- 1 2 7)

The procedure is for each new digit entered to multiply the previous total
by ten and then add in the value of the new digit. The total will be stored in
two memory locations, one for the high-order 8 bits and the other for the
low-order 8 bits; with a 1 6-bit total decimal numbers between + 3 2 7 6 7
and —32768 can be converted, these numbers being X'7FFF and
X '8000 respectively in hexadecimal. For simplicity we will use repeated
addition instead of multiplying, adding the previous total to the value of
the digit key pressed ten times, and then storing the result back into the
running total which will be displayed. A complete flowchart of the
program is given in Fig. 10.1.

MINUS = 0
ADH,ADL = 0

Display ADH,ADL
until key pressed

TEMPH, TEMPL = E

I
TEMPH,TEMPL = - E

COUNT= 10

Clear carry
TEMPL = TEMPL + ADL

TEMPH = TEMPH + ADH + Carry
COUNT = COUNT - 1

Fifl. 10.1

Consider first the part of the program to perform the two-byte addition of
the previous total to the new total. Suppose that the high- and low-order
bytes of the previous total are referred to as ADH and ADL, and that the
corresponding bytes of the new total are TEMPH and TEMPL. Then the
program might be:

; TWO BYTE ADDITION

TEMPL

ADL
TEMPL
TEMPH
ADH ; WITH CARRY
TEMPH
3 ; RETURN TO

; MONITOR
The addresses of the four memory locations are specified to the load, add,
and store instructions using 'program-counter relative' addressing; the
second word of the instruction is treated as a displacement to be
interpreted as a twos-complement number and added to the value of the
program counter to give the effective address for the operation.
Thus the "LD TEMPL" and "ST TEMPL" instructions both address the
location TEMPL because X'0F25 + X'FE = X'0F23, and X'0F2A +
X'F9 = X'0F23. Only locations within + 1 27 to —1 28 of the instruction
can be addressed using PC-relative addressing, so if the variables needed
by a program are to be further away then this it is necessary to use
'indexed addressing'. In this mode of addressing one of the three pointer
registers, P1, P2, or P3, is used as a pointer to the variables, and their
addresses are specified as displacements from the contents of the pointer
register.
To illustrate indexed addressing, assume that P2 has been set up to
contain X'OFOO (the start of the RAM); the two-byte addition could then
be written:

0 0 0 0 ADH . = 0F20
0F20 ADH: . = . + 1
0F21 ADL: . = . + 1
0F22 TEMPH: . = . + 1
0F23 TEMPL: . = . + 1

0F24 COFE ADD2: LD
0F26 02 CCL
0F27 F0F9 ADD
0F29 C8F9 ST
0F2B C0F6 LD
0F2D F0F2 ADD
0F2F C8F2 ST
0F31 3F XPPC

; TWO BYTE ADDITION USING INDEXED
ADDRESSING
P2 POINTS TO RAM

0020 ADH - X'20
0021 ADL = X'21
0022 TEMPH = X'22
0023 TEMPL = X'23

0000 . = 0F24
0F24 C223 ADD2: LD TEMPL (2)
0F26 02 CCL
0F27 F221 ADD ADL (2)
0F29 CA23 ST TEMPL (2)
0F2B C222 LD TEMPH (2)
0F2D F220 ADD ADH (2)
0F2F CA22 ST TEMPH (2)
0F31 3F XPPC 3

; WITH CARRY

;RETURN TO
; MONITOR

in this case the four memory locations are specified as offsets from
X'OFOO rather than as actual addresses. This is essentially the method
used in the final program, except that to save space the extension register
is used instead of TEMPH to hold the high-order byte of the new total; this
involves changing the "LD TEMPH(2)" and "ST TEMPHI2)" by "LDE"
and "XAE" respectively.
It takes four instructions to set up a pointer register with a specific value;
for example, to set P2 to X'OFOO the following instructions are needed:

C40F LDI X'OF
36 XPAH 2
C400 LDI X'OO
32 XPAL 2

Alternatively the monitor program can be used to set the pointer registers
as follows. When the monitor is entered by executing an "XPPC 3 "
instruction at the end of a program it saves the contents of the registers in
the top 7 bytes of RAM before using the registers itself.
Similarly, before executing one's own program following the 'GO'
command-from the keyboard it first loads the registers with the values
from these locations. The locations are assigned as follows:
Address: Stored there:
0FF9 P1H High-order byte of P1
OFFA P1L Low-order byte of P1
OFFB P2H High-order byte of P2
OFFC P2L Loworder byte of P2
OFFD A Accumulator
OFFE E Extension register
OFFF S Status register

By modifying the contents of these locations before executing a program
one can determine what the initial contents of the registers will be. Thus to
set up P2 with X'OFOO one stores X'OF at X'OFFB and X'OO at X'OFFC.
Pointer P3 is not saved in memory along with the other registers because
this contains the return address to the monitor, and if P3 is altered by
one's own program it will not be possible to return to the monitor with an
"XPPC 3 " instruction. Note that pressing 'RESET' zeroes the location
X'0FF9—X'OFFF.

Iterative loops
To perform the multiplication by ten one method would be to repeat the
instructions for the two-byte addition of ADH, ADL to TEMPH, TEMPL a
further nine times. This uses up rather a lot of memory; a better way is to
iterate around the same instructions, using a counter to determine when
ten iterations have been completed. The program thus becomes:
; ADD 10 x ADH,ADL TO TEMPH, TEMPL
; P2 POINTS TO RAM

0020 ADH
0021 ADL
0022 TEMPH =
0023 TEMPL =

X '20
X'21
X'22
X'23

001 F COUNT X'1 F ; ITERATION
;COUNTER

0000 = 0F24
0F24 C40A MUL10: LDI 10
0F26 CA1F ST COUNT (2)
0F28 C223 ADD2: LD TEMPL (2)
0F2A 02 CCL
0F2B F221 ADD ADL (2)
0F2D CA23 ST TEMPL (2)
0F2F C222 LD TEMPH (2)
0F31 F220 ADD ADH (2)
0F33 CA22 ST TEMPH (2)
0F35 BA1F DLD COUNT (2)
0F37 9CEF JNZ ADD 2

0F39 3F XPPC 3

WITH CARRY

MORE ITERATIONS
TO DO
ELSE RETURN

Again P2 is assumed to contain X'OFOO before this is executed. Now all
we have still to do is to start by loading TEMPH,TEMPL with the value of
the key pressed, and afterwards to store TEMPH,TEMPL back into
ADH,ADL and display this result as four hexadecimal digits.

The Display Interface
The keyboard and display are addressed by the microprocessor just like
a row of eight consecutive memory locations, X'ODOO to X'0D07;
X'ODOO controls the rightmost digit and X'0D07 the leftmost digit. To
illuminate a digit a binary code is stored at the address corresponding to
that digit; each of the lower seven bits controls one of the segments of the
display digit, the lowest bit controlling the 'a' segment up to bit 6
controlling the 'g' segment. Thus any combination of the segments of any
digit may be illuminated, making it possible to generate some of the letters
of the alphabet as well as the hex digits. Only one display digit is lit up at
any one time, so to generate the appearance of a static display of eight
digits the eight display addresses must be repeatedly written to with the
required eight segment codes. The following simple program
demonstrates how the display may be driven directly; pointer P1 is set up
to point to the display.

; DISPLAY DEMONSTRATION
;P1 POINTS TO DISPLAY

0000 = 0F20
0F20 8F80 DEMO; DLY x ' 80 ; DETERMINES

;SPEED
0F22 A802 ILD STORE+1
0F24 C900 STORE: ST X '00(1)
0F26 90F8 JMP DEMO ;LOOP FOREVER
0F28 . = 0FF9
0FF9 0D00 .DBYTE X'ODOO ; SO MONITOR

;SETS P1

This program changes the displacement at X'0F25 to select a different
display digit and to determine the character generated. The applications
programs which generate a changing display write directly to the display
addresses in a similar way; see for example: 'Duck Shoot', p. 72 'Digital

Alarm Clock', p. 55, and 'Message', p. 84.
To display the total in the decimal-to-hex program we would first need to
generate the four segment codes corresponding to the four hexadecimal
digits to be displayed, and then write them repeatedly to the display
addresses to give the display. Fortunately there is a routine in the monitor
which will perform this task, and as a bonus it will wait until a key is
pressed and then return with its value. The flowchart in Fig. 10.2
indicates what the routine does and this depends on the stage at which it

The RAM addresses given in the flowchart assume that P2 has been set
up to contain X'OFOO. To call the routine P3 is first set up with the
required entry address minus one, and then an "XPPC 3" instruction is
executed which exchanges this value with the value in the program
counter. The reason for loading one less than the address is that the PC is
incremented before the execution of every instruction. As an example,
the following program will cause '0123 45' to be displayed:

; DISPLAY HEX NUMBERS USING DISPD
; P2 SET TO POINT TO RAM

000 E ADH X'OE

OOOC ADL
OOOD WORD

= 0F20
0F20 C401 DISHEX: LDI X'01
0F22 CAOE ST ADH (2)
0F24 C423 LDI X'23
0F26 CAOC ST ADL (2)
0F28 C445 LDI X '45
0F2A CAOD SHOW: ST WORD (2)
0F2C C401 LDI X'01 H(DISPD)
0F2E 37 XPAH 3
0F2F C43F LDI X'3F L(DISPD) —
0F31 33 XPAL 3
0F32 3F XPPC 3 JUMP TO DISPD

SUBROUTINE
0F33 90F5 JMP SHOW COMMAND KEY

RETURN
0F35 01 XAE NUMBER KEY

RETURN
0F36 90F2 •JMP SHOW

0F38 = OFFB
OFFB 0F00 .DBYTE X'OFOO SO MONITOR

;SETS P2

When a key is pressed the point of return distinguishes whether it was a
command key or a number key. Command keys (except 'ABORT') return
to the instruction after the "XPPC 3 " . Numerical keys return two bytes
after that address, leaving room to put in a "JMP" to the part of the
program that deals with command keys. In the above program "DISHEX"
the value in the accumulator for command keys, and the value in the E
registerfor number keys, is stored at "WORD" so that it will be displayed
in the rightmost two digit positions; so, for example, pressing 'MEM' will
change the display t o ' 01 23 0 7 " .
In the decimal-to-hex program we need to display a two-byte number as
four hex digits, so the "DISPA" entry point to the display routine will be
used. The only operation remaining is to seta flag if the 'MEM' key has
been pressed, indicating that a negative decimal number is to be entered,
and if the flag is set to negate the value of each numerical key pressed
before repeatedly adding it to the running total. It is convenient to make
the value of this "MINUS" flag X'OO for positive numbers and X'FF for
negative ones. Then if the key's value is in the accumulator and the value
of the "MINUS" flag is in the E register, the sequence: "SCL, XRE, CAE"
will negate it if "MINUS" is X'FF and leave it unchanged if "MINUS" is
zero. The high-order byte of the key's value must be X'OO if the number is
positive and X'FF if it is negative, and at first sight it looks as if the value of
"MINUS" would do; but then entering 'MEM', '0 ' would set the key's
value to X'FFOO which is incorrect (it should be X '0000) . Instead we
make use of the carry from the previous operation, and "LDI 0, CAD 0 "
sets the accumulator to the correct value for the key's high-order byte.
Since the operand for these two instructions could be anything, not
necessarily zero, the sequence "LDE, CAE" would do just as well,
irrespective of what the E register contains, and this is used in the final
program to save a couple of bytes.

The program is now virtually complete, and the full listing given on page
78 of the applications manual should be recognizable as an amalgamation
of the sections that have been discussed above. The program can in fact
be used to convert numbers from any base into hexadecimal by changing
the multiplication factor at X'0F62 from its present value of X'OA (ten) to
the value of the base from which conversion is required.

50

j j RAM I/O

A socket is provided on the MK1 4 to accept the 40 pin RAM I/O device
(manufacturers part no. INS81 54). This device can be added without
any additional modification, and provides the kit user with a further 1 28
words of RAM and a set of 1 6 lines which can be utilised as logic inputs in
any combination.
These 1 6 lines are designated Port A (8 lines) and Port B (8 lines) and
are available at the edge connector as shown in Fig. 11.1.

51

The RAM I/O can be regarded as two completely separate functional
entities, one being the memory element and the other the input/output
section. The only association between the two is that they share the same
package and occupy adjacent areas in the memory I/O space. Fig. 11.2
shows the blocks in the memory map occupied by the RAM I/O, and it
can be seen that the one piece of hardware is present in four separate
blocks of memory.

800

8FF
900
9FF

A00
AFF
BOO
BFF

COO
CFF
D00
DFF
EOO
EFF

FOO

RAM I/O

DISPLAY

RAM I/O

RAM
(optional)

RAM I/O

DISPLAY

RAM I/O

RAM
(standard)

Note: —Memory area is shown divided
into 256 byte blocks. The lowest
and highest location address is
shown in hex' at left.

F F f . F l g 1 1 2 Memory I/O Map Showing RAM I/O Areas
The primary advantage for the user, in this, is that program located in
basic RAM, or in the extra RAM option, has the same address relationship
to the RAM I/O.
Fig. 11.3 shows how memory I/O space within the RAM I/O block is
allocated.

00

07
08,
OF
10
1 7
18
1 F

20

21

22

23

24

25

7F
80

,<» CLEAR BIT PORT A 4

CLEAR BIT PORT B

9 SET BIT PORT A

t SET BIT PORT B

FF
52

READ/WRITE PORTA

READ/WRITE PORT B

D BUS (ACC) to ODA

D BUS (ACC) to ODB

D BUS (ACC) to MDR

128 BYTES RAM J-

Selected bit out
of 8 determined by
low 3 bits of address
e.g. Addr. = 0, b i t = 0 (Port A)

Addr. = IF, bit = 7 (Port B)

Fig. 11.3 RAM I/O Locations and Related Functions

RAM Section
This is utilised in precisely the same manner as any other area of RAM.
Input/Output Section
The device incorporates circuitry which affords the user a great deal of
flexibility in usage of the 1 6 input/output lines. Each line can be
separately defined as either an input or an output under program
control. Each line can be independently either read as an input, or set to
logic 'I' or '0 ' as an output. These functions are determined by the
address value employed.
A further group of usage modes permit handshake logic i.e. a 'data
request', 'data ready', 'data receieved', signalling sequence to take place
in conjunction with 8 bit parallel data transfers in or out through Port A.
Reset Control
This input from the RAM I/O is connected in parallel with the CPU power-
on and manual reset. When reset is present all port lines are high
impedance and the device is inhibited from all operations.
Following reset all port lines are set to input mode, handshake facilities
are deselected and all port output latches are set to zero.
Input/Output Definition Control
At start-up all 1 6 lines will be in input mode. To convert a line or lines to
the output condition a write operation must be performed by program
into the ODA (output definition port A) or ODB locations e.g. writing the
value 80 (Hex.) into ODB will cause bit 7 port B to become an output.
Single Bit Read
The logic value at an input pin is transferred to the high order bit (bit 7)
by performing a read instruction. The remaining bits in the accumulator
become zero.
The required bit is selected by addressing the appropriate location (see
Figs. 3 & 4).
By executing JP (Jump if Positive) instruction the program can respond
to the input signal i.e. the jump does not occur if the l/P is a logic ' 1'
If a bit designated as an output is read the current value of that 0/P is
detected.
Single Bit Load
This is achieved by addressing a write operation to a selected location
(see Figs. 11.1 & 11.4). Note that it is not necessary to preset the
accumulator to define the written bit value because it is determined by bit
4 of the address.
Eight Bit Parallel Read or Write
An eight bit value can be read from Port A or B to the accumulator, or the
accumulator value can be output to Port A or B. See Figs. 11.3 & 11.4
for the appropriate address locations. Input/output lines must be pre-
defined for the required mode.
Port A Handshake Operations
To achieve eight bit data transfers with accompanying handshake via Port
A, two lines (6 and 7) from Port B are allocate special functions and must
be pre-defined by program as follows:- bit 7-input, bit 6-output.
Additionally the INTR signal line is utilised.
Three modes of handshake function are available to be selected under
program control. Fig. 11.4 shows values to be written into the three
higher order bits of the Mode Definition Register (see Fig. 11.1 for
location) for the various modes.

Bit Position & value in MDR
this condition BASIC l/U s e | e c t e d b y r e s e t X X 0 J

STROBED INPUT X 0 1 1
STROBED OUTPUT 0 1 1 \
STROBED OUTPUT

WITH TRI-STATE 1 1 1 (

Note:-
i) X = don't care
ii) Lower order

bits are don't
care also.

Fig. 11.4 Mode Definition Register (MDR) Values and Operation Modes

'Data Ready', l/P Mode
'Data Acknowledge', 0/P Mode

B6 'Data Present', l/P Mode B7 'Data Request/Acknowledge', l/P Mode
'Data Request/Acknowledge', O/P Mode 'Data Ready', O/P Mode

Fig. 11.5 Handshake Interconnections and Function

INTR Signal
In order to inform the CPU of the state of the data transfer in handshake
mode the RAM I/O generates the INTR SIGNAL: This signal will usually be
connected to the CPU interrupt input SA.
The INTR signal is activated by writing a logic 'I' into B7 and is inhibited
by a logic '0 ' . Note that although B7 must be defined as an input, in
handshake mode the B7 output latch remains available to perform this
special function.
Strobed Input Mode
A peripheral circuit applies a byte of information to Port A and a low pulse
to B7. The pulse causes the data to be latched into the RAM I/O Port A
register, and B6 is made high as a signal to the peripheral indicating that
the latch is now occupied. At the same time INTR (if enabled) goes high
indicating 'data ready' to the CPU.
The CPU responds with a byte read from Port A. The RAM I/O recognises
this, and removes INTR and the 'buffer full' signal on B6, informing the
peripheral that the latch is available for new data.

54

Fig. 11.6 Signal Timing Relationship—Handshake l/P Mode

AO-A7

B7

B6

INTR

NRDS

IX
Peripheral data valid

- M K

-IV-
7

Data strobe
from peripheral

'Data acknowledge
to peripheral

'Data ready' to CPU

•ih
Load data to RAM I/O latch
— »

- M -

- t

— ^ r Data request
to peripheral

'Data acknowledge'
from CPU

Signals
' generated

by peripheral

}
Signals
generated
by RAM I/O

Signal
generated
by CPU

Strobed Output Mode
The CPU performs a byte write to Port A, and the RAM I/O generates a
'data ready' signal by making B6 low. The peripheral responds to 'data
ready' by accepting the Port A data, and acknowledges by making B7
low. When B7 goes low the RAM I/O makes INTR high (if enabled)
informing the CPU that the data transaction is complete.

D0-D7

NWDS

INTR

B6

B7

I0-A7
In tri-state

AO-A 7
tri-state mode

Load data to RAM I/O

'Data request' from RAM I/O

'Data ready' to peripheral

Previous

'Data acknowledge'
from RAM I/O

Signal
generated
by CPU

Signals
' generated

by RAM I/O

'Data acknowledge'
from peripheral

High impedance condition

-IV-
High impedance

Fig. 11.7Signal Timing Relationship—Handshake O/P Mode

Signals
generated
by RAM I/O

Strobed Output with Tri-State Control
This mode employs the same signalling and data sequence as does
Output Mode above. However the difference lies in that Port A will, in
this mode, normally be in Tri-state condition (i.e. no load on peripheral
bus), and will only apply data to the bus when demanded by the peripheral
by a low acknowledge signal to B7.

55

Applications for Handshake Mode
Handshake facilities afford the greatest advantages when the MK1 4 is
interfaced to an external system which is independent to a greater or
lesser degree. Another MK1 4 would be an example of an completely
independent system.
In comparison the simple read or write, bit or byte, modes are useful when
the inputs and outputs are direct connections with elements that are
subservient to the MK1 4.
However whenever the external system is independently generating and
processing data the basic 'data request', 'data ready', 'data
acknowledge', sequence becomes valuable. The RAM I/O first of all
relieves the MK1 4 software of the task of creating the handshake.
Secondly it is likely in this kind of situation that the MK1 4 and external
system are operating asynchronously i.e. are not synchronised to a
common time source or system protocol. This implies that when one
element is ready for a data transfer, the other may be busy with some
other task.
Here the buffering ability of the Port A latch eases these time constraints
by holding data transmitted by one element until the other is ready to
receive.
Therefore, for example, if the CPU, in the position of a receiver, is unable,
due to the requirements of the controlling software, in the worst case, to
pay attention for 2 millisecs the transmitter would be allowed to send data
once every millisecond.

Part 2
Monitor program listing* 58

Mathematical 68
Multiply
Divide
Square Root
Greatest Common Divisor
Electronic 73
Pulse Delay
Digital Alarm Clock
Random Noise
System 77
Decimal to Hex
Relocator
Serial data input*
Serial data output*
Games 8 4

Moon Landing
Duck Shoot
Mastermind
Silver Dollar Game
Music
Function Generator
Music Box
Organ
Miscellaneous 100
Message
Self-Replicating Program
Reaction Timer

Devised and written by:
David Johnson —Davies
except programs marked thus*

57

Monitor program listing
SCIOS

TITLE SCIOS

DEVELOPED FROM SCMPKB MONITOR
BY D.J.D.
TAPE ROUTINES BY N.J.T.

0F00 RAM = OFOO
ODOO DISP = ODOO

• RAM OFF-SET

0 0 0 0 DL = 0 SEGMENT FOR DIGIT 1
0001 DH = 1 SEGMENT FOR DIGIT 2
0002 D3 = 2 SEGMENT FOR DIGIT 3
0003 04 = 3 SEGMENT FOR DIGIT 4
0004 ADLL = 4 SEGMENT FOR DIGIT 5
0005 ADLH = 5 SEGMENT FOR DIGIT 6
0006 ADHL = 6 SEGMENT FOR DIGIT 7
0007 ADHH = 7 SEGMENT FOR DIGIT 8
0008 D9 - 8 SEGMENT FOR DIGIT 9
0009 CNT = 9 COUNTER.
OOOA PUSHED = 10 KEY PUSHED.
OOOB CHAR = 1 1 CHAR READ.
OOOC ADL = 12 MEMORY ADDRESS LOW.
OOOD WORD = 13 MEMORY WORD.
OOOE ADH = 14 MEMORY ADDRESS HI.
OOOF DDTA = 15 FIRST FLAG.
0 0 1 0 ROW — 16 ROW COUNTER.
0011 NEXT = 17 FLAG FOR NOW DATA.

RAM POINTERS USED BY SCIOS, P3 IS SAVED ELSEWHERE
0FF9 P1H _ 0FF9
OFFA P1L = OFFA
OFFB P2H = OFFB
OFFC P2L = OFFC
OFFD A = OFFD
OFFE E = OFFE
OFFF S = OFFF

58

; MONITOR OPERATION SUMMARY

; INITIALLY IN'ADDRESS ENTRY'MODE

•TERM

; CHANGE TO 'DATA-ENTRY' MODE

•MEM:

; INCREMENT MEMORY ADDRESS

•ABORT:

; CHANGE TO'ADDRESS ENTRY'MODE

•GO:
; THE REGISTERS ARE LOADED FROM RAM AND PROGRAM
; IS TRANSFERRED USING XPPC P3.
; TO GET BACK DO A XPPC P3.

; MONITOR LISTING

0000 00 HALT ;ZEROS DISPLAYED ON RESET

0001 CFFFINIT: ST@-1<3) ;S0P3 = - 1
0003 901 E JMPSTART

0005
DEBUG EXIT
RESTORE ENVIRONMENT

GOOUT:
0005 37 XPAH 3
0006 C20C LD ADL(2)
0008 33 XPAL 3
0009 C7FF LD @-1 (3)
OOOB C0F2 LD E
OOOD 01 XAE
OOOE COEB LD P1L
0010 31 XPAL 1
0011 C0E7 LD P1H
0013 35 XPAH 1
0014 C0E7 LD P2L
0016 32 XPAL 2
0017 C0E3 LD P2H
0019 36 XPAH 2
001A C0E4 LD S

;FIX GO ADDRESS.
;RESTORE REGISTERS.

001C 00 HALT
001 D 07 ' CAS
001 E CODE LD A
0020 08 NOP
0021 05 IEN
0022 3F XPPC 3

; ENTRY POINT P
0023 START:
0023 C8D9 ST A
0025 40 LDE
0026 C8D7 ST E
0028 06 CSA
0029 C8D5 ST S
002B 35 XPAH 1
002C C8CC ST P1H
002E 31 XPAL 1
002F C8CA ST P1L
0031 C40F LDI H(RAM)
0033 36 XPAH 2
0034 C8C6 ST P2H
0036 C400 LDI L (RAM)
0038 32 XPAL 2
0039 C8C2 ST P2L
003B C701 LD @1 (3)
003D 33 XPAL 3
003E CAOC ST ADL (2)
0040 37 XPAH 3
0041 CAOE ST ADH (2)
0043 C400 LDI 0
0045 CA02 ST D3 (2)
0047 CA03 ST 04(2)
0049 C401 LDI 1
004B 37 XPAH 3
004C ABORT:
004C 906D JMP MEM
004E GONOW:
004E C20E LD ADH (2)
0050 90B3 JMP GOOUT
001C 00

; RESET SINGLE-STEP

;POINT P2 TO RAM

;BUMPP3 FORRETURN
;SAVEP3

TAPE INTERFACE ROUTINES

OOD5 COUNT = 005
00D6 LEN = 0D6 ^ f f g

STORE TO TAPE = 0052

0052 C501
0054 01
0055 C401
0057 CBD5
0059 C401

TOTAPE: LDK1)
XAE
LD11

NEXT: STC0UNTI3)
LD11

005B
005C
005E
0060
0061
0063
0065
0067
0068
006A
006C
006D
006F
0071
0073
0075
0077
0079
007B

07
8F08
C3D5
50
9807
8F1 8
C400
07
9005
C400
07
8F18
8F20
C3D5
F3D5
9CE0
BBD6
9CD7
3F

(kt>

007C C408
007E CBD5
0080 06
0081 D420
0083 98FB
0085 8F1C
0087 19 * *
0088 8F1C
008A BBD5
008C 9CF2
008E 40
008F CD01
0091 90E9

CAS
DLY 8
LDC0UNK3)
ANE
JZZERO
DLY 01 8
LDI 0
CAS
JMP DONE

ZERO: LDI 0
CAS
DLY 01 8
DLY020
LDC0UNTI3)
ADDC0UNTI3)
JNZ NEXT
DLDLENI3)
JNZTOTAPE
XPPC 3

LOAD FROM TAPE = 007C

FRTAPE: LDI 8
STC0UNTI3)
CSA
ANI20
JZ LOOP
DLY01C
S10
DLY 01 C
DLDC0UNTI3)
JNZLOOP
LDE
ST@ 1 (1)
JMP FRTAPE

OFFSET CALCULATION = 0093

LOOP:

v l

0093
0093

0095
0096
0097

0099
009 B

OFFSET:
C6FE

32
03
FBD8

C901
3F

LD@-2 (2)

XPAL 2
SCL
CAD OD8I3)

ST+ 1 (1)
XPPC 3

;Subtract 2 from
;destination address
;Put low byte in AC
;Set carry for subtraction
;Subtract low byte of jump
instruction address
;Put in jump operand
;Return to monitor

009C 08 NOP

009D DTACK:
009D AAOE
009F 9036

ILD ADHI2)
JMP DATA

00A1 MEMDN:
00A1 C20E LD ADH(2) ;PUT WORD IN MEM.
OOA3 35 XPAH 1
00A4 C20C LD ADL(2)
OOA6 31 XPAL 1
00A7 C20D LD WORDI2)
00A9 C900 ST (1)
OOAB 9034 JMP DATACK

OOAD MEMCK:
OOAD E406 XRI 06 ;CHECK FORGO.
OOAF 989D JZ ; GONOW
00B1 E405 XRI 05 ;CHECK FOR TERM.
00B3 9822 JZ DATA ;CHECK IF DONE.
00B5 AAOC ILD ADL(2) :UPDATE ADDRESS LOW.
00B7 9C1E JNZ DATA
00B9 90E2 JMP DTACK

J MEM KEY PUSHED
OOBB MEM:
OOBB C4FF LDI -1 ;SET FIRST FLAG.
OOBD CA1 1 ST NEXT(2) ;SET FLAG FOR ADDRESS NOW.
OOBF CAOF ST DDTAI2)
00C1 MEML:
00C1 C20E LD ADH(2)
00C3 35 XPAH 1 ;SETP1 FOR MEM ADDRESS.
00C4 C20C LD ADL(2)
00C6 31 XPAL 1
00C7 C100 LD (1)
00C9 CAOD ST W0RDI2) ;SAVE MEM DATA.
OOCB C43F LDI L(DISPD)-1 ;FIX DATA SEG.
OOCD 33 XPAL 3
OOCE 3F XPPC 3 ;G0 TO DISPD SET SEG FOR DATA
OOCF 90DC JMP MEMCK ;COMMAND RETURN.
00D1 C41A LDI LIADRH ;MAKE ADDRESS.
00D3 33 XPAL 3
00D4 3F XPPC 3
00D5 90EA JMP MEML ;GET NEXT CHAR.
00D7 DATA:
00D7 C4FF LDI -1 ;SET FIRST FLAG.
00D9 CAOF ST DDTA(2)
OODB C20E LD ADH(2) ;SETP1 TO MEMORY ADDRESS
OODD 35 XPAH 1
OODE C20C LD ADLI2)
OOEO 31 XPAL 1
00E1 c i o c x p f t T A C t f ; LD (1) ;READ DATA WORD.
00E3 CAOD ST W0RDI2) ;SAVE FOR DISPLAY.

.PAGE
00E5 DATAL:
00E5 C43F LDI L(DISPD)-1 ;FIX DATA SEG.
00E7 33 XPAL 3
00E8 3F XPPC 3 ;FIX DATA SEG-GO TO DISPD.

00E9 90C2 JMP MEMCK ;CHAR RETURN.
OOEB C404 LDI 4 ;SET COUNTER FOR NUMBER OF SHIFTS
OOED CA09 ST CNT(2)
OOEF AAOF ILD DDTA(2) ;CHECK IF FIRST.
00F1 9C06 JNZ DNFST
00F3 C400 LDI 0 ;ZERO WORD IF FIRST.
00F5 CAOD ST W0RDI2)
00F7 CA1 1 ST NEXTI2) ;SET FLAG FOR ADDRESS DONE.
00F9 DNFST:
00F9 02 CCL
OOFA C20D LD W0RD(2) ;SHIFT LEFT.
OOFC F20D ADD W0RDI2)
OOFE CAOD ST W0RDI2)
0100 BA09 DLD CNT(2) ;CHECK FOR 4 SHIFTS.
0102 9CF5 JNZ DNFST
0104 C20D LD W0RDI2) ;ADD NEW DATA.
0106 58 ORE
0107 CAOD ST W0RD(2)
0109 9096 JMP /MEMDN

SEGMENT ASSIGNMENTS
0001 SA = 1
0002 SB = 2
0004 SC = 4
0008 SD = 8
0010 SE = 16
0020 SF = 32
0040 SG = 64

; 'HEX NUMBER TO SEVEN SEGMENT TABLE'

01 OB CROM:
01 OB 3F (0)
01OC 06 0,)
01OD 5B C2JS
01 OE 4F ($.)
01 OF 66 ($•)
01 10 6D (S 1
0111 7D
01 12 ' 07 (7)
01 13 7F {?)
0114 6 7 (9)
01 15 77
01 16 7C ^ 6)
01 17 39 t C)
0118 5E U)
0119 79 (£•)
01 1A 71 (F)

01 1B ADR:

63

BYTE SA + SB + SC + SD + SE + SF
BYTE SB + SC
BYTE SA + SB + SD + SE + SG
BYTE SA + SB + SC + SD + SG
BYTE SB + SC + SF + SG

.BYTE SA + SC + SD + SF + SG
BYTE SA + SC + SD + SE + SF + SG

.BYTE SA +SB + SC
BYTE SA + SB + SC + SD + SE + SF + SG

.BYTE SA +SB + SC + SF + SG
BYTE SA + SB + SC + SE + SF + SG

.BYTE SC + SD + SE + SF+SG

.BYTE SA + SD + SE + SF

.BYTE SB + SC + SD + SE + SG
BYTE SA + SD + SE + SF + SG

.BYTE SA + SE + SF + SG

.PAGE 'MAKE 4 DIGIT ADDRESS'

SHIFT ADDRESS LEFT ONE DIGIT THEN
ADD NEW LOW HEX DIGIT.
HEX DIGIT IN E REGISTER.
P2 POINTS TO RAM.

01 1 B C404 LDI 4 ;SET NUMBER OF SHIFTS.
01 1 D CA09 ST CNT(2)
01 1 F AAOF ILD DDTA(2) ;CHECK IF FIRST.
01 21 9C06 JNZ NOTFST ;JMP IF NO.
01 23 C400 LDI 0 ;ZERO ADDRESS.
01 25 CAOE ST ADH(2)
01 27 CAOC ST ADLI2)
01 29 NOTFST:
01 29 02 CCL ;CLEAR LINK.
01 2A C20C LD ADL(2) ;SHIFT ADDRESS LEFT 4 TIMES
01 2C F20C ADD ADL(2)
01 2E CAOC ST ADL(2) ;SAVE IT.
01 30 C20E LD ADHI2) ;NOW SHIFT HIGH.
01 32 F20E ADD ADH(2)
01 34 CAOE ST ADH(2)
01 36 BA09 DLD CNT(2) ;CHECK IF SHIFTED 4 TIMES.
01 38 9CEF JNZ NOTFST ;JMP IF NOT DONE.
01 3A C20C LD ADL(2) ;NOW ADD NEW NUMBER.
01 3C 58 ORE
01 3D CAOC ST ADLI2) ;NUMBER IS NOW UP DATED.
01 3F 3F XPPC 3

.PAGE 'DATA TO SEGMENTS'

CONVERT HEX DATA TO SEGMENTS.
P2 POINTS TO RAM.
DROPS THRU TO HEX ADDRESS CONVERSION.

0 1 4 0 DISPD:
0 1 4 0 C401 LDI H(CROM) ;SET ADDRESS OF TABLE
0142 35 XPAH 1
0143 C40B LDI L(CROM)
0145 31 XPAL 1
0146 C20D LD W0RDI2) ;GET MEMORY WORD.
0148 D40F AN I OF
01 4A 0*1 XAE
014B C180 LD -128(1) ;GET SEGMENT DISP.
014D CAOO ST DL(2) ;SAVE AT DATA LOW.
014F C20D LD W0RD(2) ;FIX HI.
01 51 1C SR ;SHIFT HI TO LOW.
01 52 1C SR
01 53 1C SR
0154 1C SR
0155 01 XAE
0156 C180 LD -1 28(1) ;GET SEGMENTS.
0158 CA01 ST DH(2) ;SAVE IN DATA HI.

.PAGE ADDRESS TO SEGMENTS

CONVERT HEX ADDRESS TO SEGMENTS.
P2 POINTS TO RAM.
DROPS THRU TO KEYBOARD AND DISPLAY.

01 5A DISPA:
01 5A 03 SCL
015B C401 LDI HICROM) ;SET ADDRESS OF TABLE
01 5D 35 XPAH 1
01 5E C40B' LDI L(CROM)
01 60 31 XPAL 1
0161 LOOPD:
0161 C20C LD ADLI2) ;GET ADDRESS.
0163 D40F ANI OF
01 65 01 XAE
01 66 C1 80 LD -1 28(1) ;GET SEGMENTS.
0168 CA04 ST ADLL(2) ;SAVE SEG OF ADR LL.
01 6A C20C LD ADLI2)
016C 1C SR ;SHIFT HI DIGIT TO LOW.
016D 1C SR
01 6E 1C SR
016F 1C SR
0170 01 XAE
01 71 C180 LD -128(1) ;GET SEGMENTS.
0173 CA05 ST ADLHI2)
01 75 06 CSA ;CHECK IF DONE.
01 76 D480 ANI 080
01 78 9809 JZ DONE
01 7 A 02 CCL ;CLEAR FLAG.
01 7B C400 LDI 0
01 7D CA03 ST D4(2) ;ZERO DIGIT 4.
01 7F C602 LD @2(2> ;FIXP2 FOR NEXT LOOP.
0181 90DE JMP LOOPD
0183 DONE:
0183 C6FE LD @-2(2) ;FIX P2.

.PAGE 'DISPLAY AND KEYBOARD INPUT-

CALL XPPC 3

JMP COMMAND IN A GO = 6,MEM = 7,TERM = 3
INEGO = 22,MEM = 2 3, TERM = 27.

NUMBER RETURN HEX NUMBER IN E REG.

ABORT KEY GOES TO ABORT.
ALL REGISTERS ARE USED.

P2 MUST POINT TO RAM. ADDRESS MUST BE XXXO.

TO RE-EXECUTE ROUTINE DO XPPC3.

0185
0185 C400

KYBD:
LDI 0 ;ZERO CHAR.

0187 CAOB ST CHAR(2>
01 89 C40D LDI H(DISP) ;SET DISPLAY ADDRESS.
018B 35 XPAH 1
01 8C OFF:
01 8C C4FF LDI -1 SET ROW/DIGIT ADDRESS.
018E CA10 ST R0W(2) SAVE ROW COUNTER.
0 1 9 0 C40A LDI 10 SET ROW COUNT.
0192 CA09 ST CNT(2)
0194 C400 LDI 0
0196 CAOA ST PUSHEDI2) ;ZERO KEYBOARD INPUT.
0198 31 XPAL 1 ;SET DISP ADDRESS LOW.
0199 LOOP:
0199 AA10 ILD R0W(2) ;UP DATE ROW ADDRESS.
01 9B 01 XAE
01 9C C280 LD -128(2) GET SEGMENT.
01 9E C980 ST -128(1) SEND IT.
01 AO 8F00 DLY 0 DELAY FOR DISPLAY.
01A2 CI 80 LD -1 28(1) GET KEYBOARD INPUT.
01A4 E4FF XRI OFF CHECK IF PUSHED.
01A6 9C4C JNZ KEY JUMP IF PUSHED.
01A8 BACK:
01A8 BA09 DLD CNT(2) ;CHECK IF DONE.
01AA 9CED JNZ LOOP ;N0 IF JUMP.
01 AC C20A LD PUSHED(2) ;CHECK IF KEY.
01AE 980A JZ CKMORE
01 BO C20B LD CHAR(2) WAS THERE A CHAR?
01B2 9CD8 JNZ OFF YES WAIT FOR RELEASE.
01 B4 C20A LD PUSHED(2) NO SET CHAR.
01 B6 CAOB ST CHAR(2)
01 B8 90D2 JMP OFF
01 BA CKMORE:
01 BA C20B LD CHAR(2) CHECK IF THERE WAS A CHAR
01 BC 98CE JZ OFF NO KEEP LOOKING.

PAGE

COMMAND KEY PROCESSING
01 BE COMMAND:
01 BE 01 XAE SAVE CHAR.
01 BF 40 LDE GET CHAR.
01 CO D420 ANI 020 CHECK FOR COMMAND.
01C2 9C28 JNZ CMND JUMP IF COMMAND.
01C4 C480 LDI 080 FIND NUMBER.
01C6 508F ANE
01C7 9C1B JNZ LT7 OTO 7.
01C9 C440 LDI 040
01CB 50 ANE
01CC 9C19 JNZ N89 8 OR 9.
01 CE C40F LDI OF
01 DO 50 ANE
01D1 F407 ADI 7 MAKE OFF SET TO TABLE.
01 D3 01 XAE PUT OFF SET AWAY.

01D4 C080
01D6
01D6 01
01D7 C702
01D9 3F
01 DA 90A9

LD -128(0) ;GET NUMBER.
KEYRTN:

XAE
LD @ 2(3)
XPPC 3
JMP KYBD

SAVE IN E.
FIX RETURN.
RETURN.
ALLOWS XPPC P3 TO RETURN.

«

01 DC
01 DE
01 EO
01E2
01E4
01 E4
01E5
01E7

1E7
1E8

01 EA

OAOB
OCOD
0000
OEOF

60
90EF

60
F408
90EA

LT7:

N89:

BYTE 0A.0B,0C,0D,0,0,0E,0F

XRE ;KEEP LOW DIGIT.
JMP KEYRTN

XRE
ADI 08
JMP KEYRTN

;GET LOW.
;MAKE DIGIT 8 OR 9.

.PAGE
01 EC CMND:
01 EC 60 XRE
01 ED E404 XRI 04
01 EF 9808 JZ ABRT
01F1 3F XPPC 3

01F2 9091 JMP KYBD

CHECK IF ABORT.
ABORT.
IN E 23 = MEM,22 = GO,27 =TERM
IN A 7 = MEM,6 =G0,3 = TERM.
ALLOWS JUST A XPPC P3 TO
RETURN.

01 F4 KEY:
01 F4 58 ORE ;MAKE CHAR.
01 F5 CAOA ST PUSHEDI2) ;SAVE CHAR.
01 F7 90AF JMP BACK

01 F9 ABRT:
01F9 C400 LDI H(ABORT)
01 FB 37 XPAH 3

C442 LDI L(AB0RT)-1
1)1 FE 33 XPAL 3
01 FF 3F XPPC 3 ;G0 TO ABORT

0000 .END

67

r

Mathematical
The mathematical subroutines all take their arguments relative to

the pointer register P2. Pointer P3 is the subroutine calling register. All
of these routines may be repeated without reloading P3 after the
first call.
The simplest way to test them out is to get the monitor to load P2 from
memory for you by storing the address required at OFFB and OFFC.
The arguments should then be entered at successive locations starting at
this address, as specified in the diagram labelled 'Stack Usage' at the top
of each subroutine. The results are similarly returned relative to P2.
To illustrate this procedure the following sequence sets up the multiply
subroutine to multiply X'FF by X'FF:

OFFB OF ; Sets P2H
OFFC 80 ; Sets P2L

0F80 FF ; Multiplicand
0F81 FF ; Multiplier

The program is entered at 0F50 and the result, X'FEOI in this example,
will be put into locations 0F82 and 0F83. A similar process can be
followed to use the other mathematical routines.
'Multiply' gives the 1 6-bit unsigned product of two 8-bit unsigned
numbers.

e.g. A = X'FF (255)
B = X'FF (255)
RESULT = X'FEOI (65025).

'Divide' gives the 1 6-bit unsigned quotient and 8-bit remainder of a 1 6-
bit unsigned dividend divided by an 8-bit unsigned divisor,

e.g. DIVISOR = X'05 (5)
DIVIDEND = X '5768 (22376)
QUOTIENT = X' 1 1 7B (4475)
REMAINDER = X'01 (1).

'Square Root' gives the 8-bit integer part of the square root of a
1 6-bit unsigned number. It uses the relation:

(n + 1)2 —n2 = 2n + 1,
and subtracts as many successive values of 2n + 1 as possible from the
number, thus obtaining n.

e.g. NUMBER = X'D5F6 (54774)
ROOT = X'EA (234).

'Greatest Common Divisor' uses Euclid's algorithm to find GCD of
two 1 6-bit unsigned numbers; i.e. the largest number which will
exactly divide them both. If they are coprime the result is 1.

e.g. A = X'FFCE (65486 = 4 78 x 137)
B = X'59C5 (23701 = 1 73 x 137)
GCD = X'89 (137).

68

Multiply
Multiplies two unsigned 8-bit numbers
(Relocatable)

Stack usage:
REL:
- 1

(P2)-> 0

ENTRY: USE:
Temp
A

1 B B
2 Result (H
3 Result (L

0 0 0 0 A - 0
0001 B = 1
FFFF Temp = - 1
0002 RH = 2
0003 RL = 3

0 0 0 0 . = 0F50
OF 50 C408 Mult: LDI 8
OF 52 CAFF ST Temp (2)
OF 54 C400 LDI 0
OF 56 CA02 ST RH(2)
OF 58 CA03 ST RL(2)
OF 5A C201 Nbit: LD B(2)
OF 5C 02 CCL
OF 5D 1 E RR
OF 5E CA01 ST B(2)
OF 60 9413 JP Clear
0F62 C202 LD RH(2)
OF 64 F200 ADD A(2)
OF 66 IF Shift: RRL
OF 67 CA02 ST RHI2)
OF 69 C203 LD RL(2)
0F6B IF RRL
OF 6C CA03 ST RL(2)
0F6E BAFF DLD Temp(2)
OF 70 9CE8 JNZ Nbit
OF 72 3F XPPC 3
OF 73 90DB JMP Mult
OF 75 C202 Clear: LD RH (2)
OF 77 90ED JMP Shift

0 0 0 0 .END

RETURN:

A
B
Result (H)
Result (L)

69

Divide
Divides an unsigned 1 6-bit number by
an unsigned 8-bit number giving
1 6-bit quotient and 8-bit remainder.
(Relocatable)

Stack usage:
REL: ENTRY: USE: RETURN:
— 1 Quotient(l)

(P2)-> 0 Divisor Quotient(H)
+ 1 Dividend(H) Quotient(L)
+ 2 Dividend(L) Remainder

FFFF Quot = - 1
0 0 0 0 DSOR = 0
0001 DNDH = 1
0002 DNDL = 2

0 0 0 0 . = 0F80
OF 80 C200 Div: LD DS0RI2)
OF 82 01 XAE
0F83 C400 LDI 0
OF 85 CAOO ST DS0RI2)

OF 87 CAFF ST Quot(2)
0F89 C201 Subh: LD DNDHI 2)
OF 8B 03 SCL
OF 8C 78 CAE
0F8D CA01 ST DNDHI2)
OF 8F 1 D SRL
0F90 9404 JP Stoph
0F92 AAOO ILD DS0RI2)
OF 94 90F3 JMP Subh
0F96 C201 Stoph: LD DNDH(2)
0F98 70 ADE
0F99 CA01 ST DNDH(2)
0F9B C202 Subl: LD DNDL(2)
OF 9D 03 SCL
OF 9E 78 CAE
0F9F CA02 ST DNDLI2)
0FA1 C201 LD DNDH(2)
0FA3 FCOO CAI 0
0FA5 CA01 ST DNDH(2)
0FA7 1 D SRL
0FA8 9404 JP Stopl
OFAA AAFF ILD Quot(2)
OFAC 90ED JMP Subl
OFAE C202 Stopl: LD DNDL(2)
OFBO 70 ADE
OFB1 CA02 ST DNDLI2)
0FB3 C2FF LD Quot (2)
OFB5 CA01 ST DNDH(2)

;Carry is clear

0FB7
0FB8

3F

90C6

0000

XPPC
JMP

END

3
Div

; Return

0000
0001
FFFF

0000
0F20 C400
OF 2 2 CAFF

Square Root
Gives square root of 1 6-bit unsigned number
Integer part only. (Relocatable).

Stack usage:
REL:
- 1

0
+ 1

(P2)->

HI
L0
Temp

SQRT:

ENTRY: USE:
Temp

Number(H)
Number(L)

0
1
- 1

. = 0F20
LDI X'OO
ST Tempi 2)

RETURN:

Root(H)
Root(L)

OF 24
OF 25
OF 27
OF 29
OF 2A
OF 2C
OF 2E
0F2F
0F31
OF 33
OF 34
OF 36
OF 38
0F39
OF 3B
OF 3D
0F3F
0F41
0F43
0F45
0F46

OF48

OFFB

03
BAFF
F2FF
01
C4FE
F400
01
F201
CA01
40
F200
CAOO
ID
9402
90E7
C400
CAOO
FAFF
CA01
3F
90D8

0F80

0000

Loop:

Exit:

SCL
DLD
ADD
XAE
LDI
ADI
XAE
ADD
ST
LDE
ADD
ST
SRL
JP
JMP
LDI
ST
CAD
ST
XPPC
JMP

. = OFFB

Temp(2)
Temp(2)

X'FE
X'OO

L0<2)
L0(2>

Hl(2)
Hl(2)

EXIT
LOOP
X'OO
Hl(2)
Temp(2)
LO(2)
3
SQRT

;Return
;For Repeat

.DBYTE 0F80 ;P2-> Number

.END

Greatest Common Divisor
; Finds Greatest Common Divisor of two
; 1 6-bit unsigned numbers
; uses Euclid's Algorithm. (Relocatable).

; Stack usage:
REL: ENTRY: USE: RETURN
0 A(H) A(H) 0
1 A(L) AIL) 0
2 B(H) B(H) GCD(H)
3 B(L) B(L) GCD(L)

0000 AH 0
0001 AL = 1
0002 BH = 2
0003 BL = 3

0000
'

. = 0F20
OF 20 03 GCD: SCL
OF 21 C203 LD BL(2)
OF 23 FA01 CAD AL(2)
OF 25 CA03 ST BL(2)
OF 27 01 XAE
OF 28 C202 LD BH(2)
OF 2A FAOO CAD AH(2)
OF2C CA02 ST BH(2)
0F2E 1 D SRL ; Put carry in top bit
OF 2F 9402 JP Swap'
OF 31 90ED JMP GCD ;Subtract again
OF 33 02 Swap: CCL
0F34 C201 LD AL<2)
OF 36 01 XAE
0F37 70 ADE
0F38 CA01 ST AL(2)
OF 3A 40 LDE
0F3B CA03 ST BL(2)
0F3D C200 LD AH(2)
OF 3F 01 XAE
0F40 C202 LD BH(2)
0F42 70 ADE
0F43 CAOO ST AH(2)
0F45 01 XAE
OF46 CA02 ST BH(2)
OF48 40 LDE ;Get new AH(2)
0F49 DA01 OR AL(2) ;0R with new AL(2)
OF 4B 9CD3 JNZ GCD ;Not finished yet
OF 4D 3F XPPC 3 ; Return
0F4E 90D0 JMP GCD ;For repeat run

0 0 0 0 .END

Electronic
'Pulse Delay' uses a block of memory locations as a long shift-register,
shifting bits in at the serial input SIN and out from the serial output SOUT.
By varying the delay constants the input waveform can be delayed by up
to several seconds, though for a fixed block of memory the resolution
of the delay chain obviously decreases with increased delay.

With the program as shown the shift-register uses the 128 locations
0F80 to OFFF, thus providing a delay of 1 024 bits.
The 'Digital Alarm Clock' gives a continuously changing display of the
time in hours, minutes and seconds. In addition, when the alarm time
stored in memory tallies with the actual time the flag outputs are taken
high. The time can be set in locations 0F1 6, 0F1 7, and 0F1 8, and the
alarm time is stored in locations 0F1 2, 0F1 3, and 0F1 4.
The program should be executed at 0F20.

The program depends for its timing on the execution time of the
main loop of the program, which is executed 98 times a second, so this
is padded out to exactly 1 /98th of a second with a delay instruction. The
delay constants at 0F7Fand 0F81 should be adjusted to give the
correct timing.
'Random Noise' generates a pseudo-random sequence of 21 5 -1 or
65535 bits at the flag outputs. If one flag output is connected to an
amplifier the sequence sounds like random noise. Alternatively, by
converting the program to a subroutine to return one bit it could be used
to generate random coin-tosses for games and simulations. Note that
the locations 0F1 E and 0F1 F must not contain 0 0 for the sequence
to start.

Pulse Delay
; Pulse delayed by 1024 bit-times.
; (Relocatable). Uses serial in/out.

0000 . = 0F1 F
0F1F Bits: . = . + 1 ;bit counter

0F20 C40F Enter: LDI H(Scrat)
OF 22 35 XPAH 1
OF 23 C480 LDI L(Scrat)
OF 25 31 Next: XPAL 1
OF 26 C408 LDI 8
OF 28 C8F6 ST Bits
OF 2A C100 LD (1) ;Get old byte
OF 2C 01 XAE ;Exchange
OF 20 CD01 ST @ + 1 (1) ;Put back new byte
OF 2F 19 Output: SIO ;Serial I/O
OF 30 C400 LDI TC1
OF 32 8F04 DLY TC2 ; Delay bits
OF 34 B8 EA DLD Bits
OF 36 9CF7 JNZ Output
OF 38 31 XPAL 1 ;P1 = 0D00 Yet?

73

OF 39 9CEA JNZ Next
0F3B 90E3 JMP Enter

0000 TC1 = 0 ; Bit-time
0004 TC2 = 4 ;Delay constants

0F80 Scrat = 0F80 ;Start of scratch area
0000 .END

Digital Alarm Clock
;Outputs are held on when alarm
;time = Actual time. i.e. for one sec.
;Enter at 0F20

01 OB Crom = 01 OB ;Segment table
ODOO Disp = ODOO ;Display address
OFOO Ram - OFOO
0F10 Row = Ram + 010

0 0 0 0 . = 0F1 2
OF 1 2 . = .+ 1 ;Alarm time:hours
OF 13 . = . + 1 ;Minutes
0F1 4 . = .+ 1 ;Seconds
OF 15 . = .+ 1 ;Not used
OF 16 Time: . = . + 4 ;Actual time
OF 1 A 76 .BYTE 076 ;Excess: Hours
OF 1 B 40 .BYTE 040 ;Minutes
0F1C 40 .BYTE 040 ;seconds
0F1D 20 Speed BYTE 002 ;Speed
OF 1 E . = 0F20
0F20 C401 Clock: LDI HtCrom)
OF22 37 XPAH 3
OF 23 C40B LDI L(Crom)
OF 2 5 33 XPAL 3
OF 26 C40D New: LDI H(Disp)
OF 28 36 XPAH 2
OF 29 C40D LDI L (Disp) + 0 D
0F2B 32 XPAL 2
0F2C C40F LDI H(Time)
0F2E 35 XPAH 1
0F2F C41A LDI L(Time) + 4
0F31 31 XPAL 1
0F32 03 SCL
OF 33 C405 LDI 5 ;Loop count
OF 35 C8DA ST Row
0F37 C5FF Again: LD @ - 1 (1)
0F39 ECOO DAI 0
0F3B C900 ST (1)
OF 3D E904 DAD + 4(1)
0F3F 9804 JZ Cs,
0F41 9802 JZ Cs ;Equalize paths
0F43 9002 JMP Cont
0F45 C900 Cs: ST (1)

74

OF 47 C100 Cont: LD (1)
0F49 D40F ANI OF
OF 4B 01 XAE
OF 4C C380 LD - 1 28(3) ;Get segments
0F4E CE01 ST @ + 1(2) ;Write to display
OF 50 C440 LDI 040
OF 52 8F00 DLY 00 ;Equalize display
OF 54 C100 LD (1)
OF 56 10 SR
OF 5 7 10 SR
OF 58 1C SR
OF 59 10 SR
OF 5A 01 XAE
OF 5B C380 LD - 1 28(3)
OF 5D CE02 " S T @ + 2(2) ;Leave a gap
OF 5F B8B0 DLD Row
OF 61 9CD4 JNZ Again
OF 63 C403 LDI 3
OF 65 C8AA ST Row ; Digit count
OF 67 0 4 0 0 LDI 0
OF 69 01 XAE
OF 6A C5FF Loop: LD @ - 1 (1)
OF 6C E104 XOR + 4(1) ;Same time?
0F6E 58 ORE
OF 6F 01 XAE
OF 70 B89F DLD Row
OF 72 9CF6 JNZ Loop
OF 74 01 XAE
OF 7 5 9803 JZ Alarm ;Times tally
OF 77 40 LDE
OF 78 9003 JMP Contin
0F7A C407 Alarm: LDI 07 ;All flags on
OF 7C 08 NOP ;Pad out path
0F7D 07 Contin: CAS ;Outputto flags
OF 7E 0402 LDI 02 ;Pad out loop to
0F80 8F1 1 DLY 01 1 ;1 /(10O-speed) sees.
0F82 90A2 JMP New

0000 END
d

Random Noise
; Relocatable
; Generates sequence 2f1 5 bits long

. = 0F1E
OF 1 E Line: • = • + 2 ;For random number

;Must not be zero
OF 20 COFD Noise: LD Line
OF 22 1 F RRL
OF 23 C8FA ST Line
OF 25 C0F9 LD Line + 1

OF 27 1 F RRL
OF 28 C8F6 ST Line + 1
OF 2A 02 CCL ;Ex-or of bits 1 and 2
OF 2B F402 ADI 02 ;In bit 2
OF 2D 1 E RR ; Rotate bit 2 to
OF 2E 1 E RR ; Bit 7
OF 2F 1 E RR
OF 30 D487 ANI 087 ;Put it in carry and
OF 32 07 CAS ;UpcJate flags
OF 33 90EB JMP Noise

0000 END

System
'Decimal to Hex' displays in hex the decimal number entered in at the
keyboard as it is being entered. Negative numbers can be entered too,
prefixed by 'MEM'.

e.g. 'MEM' '1 " 5 ' '7 ' displays 'FF63'
'TERM' clears the display ready for a new number entry.
'Relocator' will move up to 256 bytes at a time from any start address to
any destination address.
These two addresses and the number of bytes to be moved are specified
in the 5 locations before the program. Since the source program and
destination area may overlap, the order in which bytes are transferred is
critical to avoid overwriting data not yet transferred, and so the program
tests for this. The program should be executed at 0F20.
Any of the programs marked relocatable can be moved, without
alteration, to a different start address and they will execute in exactly the
same manner.

Serial Data Transfers
This section describes a method of serial data input/output (I/O)
data transfer using the Extension Register. All data I/O is under direct
software control with data transfer rates between 1 10 baud and 9600
baud selectable via software modification.
Data Output
Data to be output is placed in the Extension Register and shifted out
through the SOUT Port using the Serial Input/Output Instruction (SIO). The
Delay Instruction (DLY), in turn, creates the necessary delay to achieve
the proper output baud rate. This produces a TTL-level data stream which
can be used as is or can be level-shifted to an RS-232C level. Numerous
circuits are available for level shifting. As an example, either a DS1 488 or
an operational amplifier can be used. Inversion of the data stream, if
needed, can be done either before the signal is converted or by the level
shifter itself.
Data Input
Data input is received in much the same way as data is output. The Start
Bit is sensed at the SIN Port and then received using the SIO Instruction
and the DLY Instruction. After the Start Bit is received, a delay into the
middle of the bit-time is executed, the data is then sensed at each full bit-
time (the middle of the bit) until all data bits are received. If the data is at
an RS-232C level, it must be shifted to a TTL level.
This can be done with either a DS 1 489 or an operational amplifier. If
inversion if the data is necessary, it should be done before it is presented
to the SIN Port.
Timing Considerations
Serial data transmission rates can be varied by simply changing the delay
constants in each of the programs. Table 1 contains the delay constants
needed for the various input baud rates. Table 2 contains the delay
constants needed for the various output baud rates.

77

Baud
Rate

B i t
Time HBTF HBTC BTF BTC

110 9 .09 ms X'C3 X '8 X '92 X'1 1
3 0 0 3 .33 ms X '29 X'3 X'5E X'6
6 0 0 1.67 ms X'8A X'1 X '20 X '3

1 200 0 .833ms X'BB X'O X'81 X'1
2 4 0 0 0.41 7ms X '52 X'O X'B2 X'O
4 8 0 0 0 .208ms X'1F X'O X'4A X'O
6 4 0 0 0.1 56ms X ' l 2 X'O X '30 X'O
9 6 0 0 0 .104ms X'5 X'O X' 1 6 X'O

Table 1. Input Delay Constants (4 MHz SC/MP-II)

Baud Bit
Rate Time BTF1 BTF2 BTC
110 9.09 ms X'91 X>%<0 X'1 1
3 0 0 3 .33 ms X'5E X '53 X '6
600 1.67 ms X'1 F X' 1 4 X'3

1 200 0 .833 ms X'81 X '76 X'1
2 4 0 0 0 .41 7 ms X'B2 X'A7 X'O
4 8 0 0 0 . 2 0 8 ms X '49 X'3E X'O
6 4 0 0 0.1 56 ms X'2F X '24 X'O
9 6 0 0 0 . 1 0 4 ms X'1 5 X'A X'O

Table 2. Output Delay Constants (4 MHz SC/MP-II)

NOTES:
1. The Serial Data Output routine requires that the bit-count (BITCNT)

in the program be set to the total number of data bits and stop bits to
be used per character.

2. Two stop bits are needed for the 1 1 0 baud rate; all other baud rates
need only one stop bit.

Decimal to Hex
Converts decimal number entered at
keyboard to hex and displays result

; 'MEM' = minus, 'TERM' clears display
; (Relocatable)

OOOC ADL = OC
000E ADH = OE
OFOO Ram = OFOO
01 5A Dispa = 01 5A
001 1 Count = 01 1
001 2 Minus = 01 2
0013 Ltemp = 013

0000 . = 0F50
0F50 C400 Dhex: LDI 0
OF52 CA1 2 ST Minus(2)
0F54 CAOE ST ADHI2)
0F56 CAOC ST ADLI2)
0F58 C401 Disp: LDI H(Dispa)
0F5A 37 XPAH 3
0F5B C459 LDI L(Dispa)-1
0F5D 33 XPAL 3
0F5E 3F XPPC 3
0F5F 9028 JMP Comd ;Command key
0F61 C40A LDI 10 ;Number in extension
0F63 CA1 1 ST Count(2) ; Multiply by 1 0
OF65 03 SCL
OF66 C21 2 LD Minus(2)
OF68 01 XAE
0F69 60 XRE
0F6A 78 CAE
0F6B 01 XAE
0F6C 40 LDE ;Same as: LDI 0
0F6D 78 CAE ; CADO
0F6E 01 XAE
0F6F 9002 JMP Digit
0F71 C21 3 Addd: LD Ltemp(2) ;Low byte of product
OF73 02 Digit: CCL
0F74 F20C ADD ADL(2)
0F76 CA13 ST Ltemp(2)
OF78 40 LDE ;High byte of product
OF79 F20E ADD ADH(2)
0F7B 01 XAE ;Put back
0F7C BA1 1 DLD Count! 2)
0F7E 9CF1 JNZ Addd

0F80 40 LDE
0F81 CAOE ST ADH(2)
0F83 C213 LD Ltemp(2)
OF85 CAOC ST ADL(2)
0F87 90CF JMP Disp
0F89 E403 Comd: XRI 3
0F8B 98C3 JZ Dhex
0F8D C4FF LDI X'FF
0F8F CA12 ST Minus(2)
0F91 90C5 JMP Disp

0F93 . = OFFB
OFFB 0F00 .DBYTE Ram

0 0 0 0 END

Display result
'TERM'?
Restart if so
Must be 'MEM'

;Set P2-> Ram

Relocator

FF80
0000

Moves block of memory
'From' = source start address
'To' = destination start address
'Length' = No of bytes
(Relocatable)

— 128 ;Extension as offset
. = 0F1 B

0F1B From: . = . + 2
0F1D To: . = . + 2
0F1F Length: . = . + 1

0F20 C400 Entry: LDI 0
OF22 01 XAE
OF23 03 SCL
0F24 C0F9 LD To + 1
OF26 F8F5 CAD From +
0F28 C0F4 LD To
0F2A F8F0 CAD From
OF2C 1 D SRL
0F2D 9403 JP Fgt
0F2F COEF LD Length
0F31 01 XAE
0F32 02 Fgt: CCL
0F33 C0E8 LD From +
OF35 70 ADE
0F36 31 XPAL 1
0F27 C0E3 LD From
0F39 F400 ADI 0
0F3B 35 XPAH 1
0F3C 02 CCL
0F3D COEO LD To + 1
0F3F 70 ADE

;'From' greater than 'To'
;Start from end

80

0F40 32 XPAL 2
0F41 CODB LD To
0F43 F400 ADI 0
0F45 36 XPAH 2
0F46 02 CCL
0F47 40 LDE
0F48 9C02 JNZ Up
0F4A C402 LDI 2
0F4C 78 Up: CAE
0F4D 01 . XAE
0F4E C580 Move: LD @E(1)
0F50 CE80 ST @E(2)
0F52 B8CC DLD Length
0F54 9CF8 JNZ Move
0F56 3F XPPC 3

0000 .END

;i.e. subtract 1
;Put it in ext.

>Move byte

;Return

Serial Data Input
; Routine is called with a "XPPC3" instruction

; Data is received through the serial I/O Port.

; Before executing routine, Pointer P2 should point
; to one available location in R/W memory for a
; counter.
; On return from routine, data received will be in the
; Accumulator and the Extension Register.

; Delay Constants, user defined for desired Baud rate.
; The following example is for 1 200 Baud:

OOBB HBTF = OBB
0000 HBTC = 0
0081 BTF = 081
0001 BTC = 01

Half Bit time, Fine
Half Bit time, Coarse
Full Bit Time, Fine
Full Bit time, Coarse

Search:
0000 C408 LDI
0002 CAOO ST

Again:
0004 C400 LDI
0006 01 XAE
0007 19 S10
0008 40 LDE
0009 9CF9 JNZ
000B C4BB LDI
000D 8F00 DLY
000F 19 SIO
0010 01 XAE

08 ; Initialize Loop Counter
(2) ; Save in memory

0 ;Clear Accumulator
; Clear E. Reg.
;Look for Start Bit
; Bring into Acc.

Again ; If not zero, look again
HBTF ; Load Acc Half Bit time
HBTC ; Delay Half Bit time

; Check Input again to
; be sure of Start Bit

0011 9CF1 JNZ
0013 C400 LDI
0015 01 XAE

Loop:
0016 C481 LDI
0018 8F01 DLY
001A 19 SIO
001 B BAOO DLD
001 D 9CF7 JNZ
001F 40 LDE
0020 3F XPPC

0000 END

Again ; If not zero, was not
0 ; start B

BTF ; Load Bit time Fine
BTC ; Delay one Bit time

; Shift in Data Bit
(2) ; decrement loop counter
Loop ;Test for done

; Done, put data in acc.
P3

Serial Data Output
; Routine is called with a "XPPC3" instruction.

; Data is transmitted through Serial I/O Port.

; Before executing subroutine, pointer P2 should
; point to one available byte of R/W memory for a
; counter.
; Upon entry, character to be transmitted must be in
; the accumulator.

; Delay constants, user defined for desired baud rate.
; The following example is for 1 200 baud:

0081 BTF1 = 081 ; Bit time Fine, first loop
0076 BTF2 = 076 ; Bit time Fine, second loop
0001 BTC = 01 ; Full Bit time, Coarse

; Character Bit-count. This should be set for the
; desired numbe.r of Data Bits and stop Bits.

0009 BITCNT = ; 8 data and 1 Stop Bit

Start:
0000 01 XAE Save data in E. Reg.
0001 C400 LDI 0 Clear acc.
0003 01 XAE Put data in acc, clear E
0004 1 9 SIO Send Start Bit
0005 01 XAE Put data in E. Reg.
0006 C481 LDI BTF1 Load Bit time Fine
0 0 0 8 8F01 DLY BTC Wait one Bit time
000A C409 LDI BITCNT Set loop count for data
OOOC CAOO ST (2) and Stop Bit(s). Save

Send: in count.
000E 19 SIO Send Bit
000F 40 LDE
0 0 1 0 DC80 ORI 080 Set last Bit to 1
0012 01 XAE Put back in E. Reg.
0013 C476 LDI BTF2 Load Bit time Fine

001 5 8F01 DLY BTC ; Delay one Bit time
001 7 BA00 DLD (2) ; decrement Bit counter
001 9 9CF3 JNZ Send ; If not done, loop back
001 B 3F XPPC 3 ; otherwise, return

0 0 0 0 .END

Games
The first two games are real-time simulations which provide a test of

skill, and they can be adjusted in difficulty to suit the player's ability. The
last two games are both tests of clear thinking and logical reasoning, and
in the last one you are pitted against the microprocessor which tries
to win.
'Moon Landing' simulates the landing of a spacecraft on the moon.
The displays represent the control panel and give a continuously changing
readout of altitude (3 digits), rate of descent (2 digits), and fuel remaining
(1 digit). The object of the game is to touch down gently; i.e. to reach zero
altitude with zero rate of descent. To achieve this you have control over
the thrust of the rockets: the keys 1 to 7 set the thrust to the
corresponding strength, but the greater the thrust the higher the rate of
consumption of fuel. When the fuel runs out an 'F' is displayed in the
fuel gauge, and the spacecraft will plummet to the ground under the force
of gravity.

On reaching the moon's surface the display will freeze showing the
velocity with which you hit the surface if you crashed, and the fuel
remaining. Pressing 'TERM' will starta new landing.
The program should be entered at 0F52.

The speed of the game is determined by the delay constants at 0F38
and OF3A. The values given are suitable for a 1 MHz clock and they
should be increased in proportion for higher clock rates. The initial values
for the altitude, velocity, and fuel parameters are stored in memory at
OF 1 4 to OF 1 F and these can be altered to change the game.
'Duck Shoot' simulates ducks flying across the skyline. At first there is
one duck, and it can be shot by hitting the key corresponding to its
position: 7 = leftmost display, 0 = rightmost display. If you score a hit the
duck will disappear; if you miss however, another duck will appear to
add to you task.

The counter at OF 1 D varies the speed of flight and can be increased
to make the game easier.
'Mastermind' consists of trying to deduce a 'code' chosen by the
machine. The code consists of four decimal digits, and pressing 'TERM' •
followed by'MEM' causes the machine to choose a new code. The
player makes guesses at the code which are entered at the keyboard.
Pressing 'GO' then causes the machine to reveal two pieces of
information, which are displayed as two digits:

(1) The number of digits in the guess which are correct and in the
right position, (known as 'Bulls') and

(2) the number of digits correct but in the wrong position, (known
as 'Cows').

For example, suppose that the machine's code was ' 6678 ' . The
following guesses would then score as shown:

1234 00 1278 20
7812 02 7687 12

Subsequent guesses are entered in a similar way, and the player tries
to deduce the code in as few attempts as possible.
'Silver Dollar Game' is traditionally played with a number of coins which
are moved by the players in one direction along a line of squares. In his
turn,a player must move a coin to the right across as many unoccupied

squares as he wishes. The player first unable to move—when all the
corns have reached the right-hand end of the line— loses, and the other
player takes the coins!

In this version of the game the coins are represented by vertical bars
moving along a dashed line. There are five coins numbered, from right
to left, 1 to 5. The player makes his move by pressing the key
corresponding to the number of the coin he wishes to move, and each
press moves the coin one square along to the right. The machine plays
against you, and pressing 'MEM' causes it to make its move. Note that
the machine will refuse to move in its turn unless you have made a legal
move in your turn. 'TERM' starts a new game.
The program should be entered at 0F28.

The machine allows you to take first move and it is possible to win
from the starting position given, though this is quite difficult. The five
numbers in locations 0F1 3 to 0F1 7 determine the starting positions of
each coin and these can be altered to any other values in the range 00 to
OF provided they are in ascending order.

Moon Landing
; Land a rocket on the moon
; Display shows altitude-velocity-fuel
; Keys 1 -7 control the thrust

0005 Grav = 5 ;Force of gravity
ODOO Disp = ODOO ;Display address
01 OB Crom = 01 OB ;Segment table
FF80 E = - 1 28 Extension as offse
FFE3 Row = 0F03-Ret
FFE4 Count

;Variables
= 0F04-Ret

0000 . = 0F05
0F05 Save: . = .+ 1
0F06 H1: . = . + 1
0F07 L1: . = . + 1
0F08 Alt: . = . + 3 ;Altitude
OFOB Vel: . = . + 3 ;Velocity
OFOE Accn: . = . + 2 Acceleration
0F10 Thr: . = . + 2 ;Thrust
0F1 2 Fuel: . = . + 2 ;Fuel left

;Original values
0F14 08 Init: BYTE 08,050,0;Alt i tude = 850

50
00

0F1 7 99 BYTE 099,080,0; Velocity = - 20
80
00

0F1 A 99
98

BYTE 0 9 9 , 0 9 8 Acceleration = —

0F1C 00
02

BYTE 0,02 ;Thrust = 2

0F1E 58
00

BYTE 058 ,0 ;Fuel = 5

;Subroutine to display AC as two digits
OF 20 3E Ret: XPPC 2 ;P2 contains 0F20
OF 21 C8E3 ST Save
OF 23 C401 LDI H(Crom)
0F25 35 XPAH 1
OF 26 C8DF ST H1 ;Run out of pointers
OF 28 C40B LDI L(Crom)
OF 2A 31 XPAL 1
0F2B C8DB ST L1
OF 2D C0D7 LD Save
OF 2F 02 CCL
0F30 D40F ANI OF
OF 32 01 XAt
OF 33 C180 Loop: LD E(1)
0F35 CF01 ST @+ 1(3)
OF 37 C400 LDI 0 ;Delay point
0F39 8F04 DLY 4 ;Determines speed
OF 3B C0C9 LD Save
0F3D 1C SR
OF 3E 1C SR
OF 3F 1C SR
0F40 1C SR
OF 41 01 XAE
0F42 06 CSA
OF 43 03 SCL
0F44 94ED JP Loop ;Do it twice
0F46 C400 LDI 0
OF 48 CF01 ST @+ 1(3) ; Blank between
OF 4A COBB LD H1 ; Restores P1:
OF 4C 35 XPAH 1
OF 4D C0B9 LD L1
0F4F 31 XPAL 1'
OF 50 90CE JMP Ret ; Return

;Main moon-landing program
;Begin execution here.

OF 52 C40F Start: LDI H(lnit)
OF 54 35 XPAH 1
OF 55 C414 LDI L(lnit)
OF 57 31 XPAL 1
0F58 C40F LDI H(Ret)
OF 5A 36 XPAH 2
OF 5B C420 LDI L(Ret)
OF 5D 32 XPAL 2
OF 5E C40C LDI 12
0F60 CAE4 ST Count! 2)
OF 62 C10B Set: LD + 11(1)
OF 64 CDFF ST < 3 - 1 (1)
OF 66 BAE4 DLD Count(2)
OF 68 9CF8 JNZ Set

;Main loop
0F6A C40C Again: LDI H(Disp)—1
0F6C 37 XPAH 3
0F6D C4FF LDI L(Disp)—1
0F6F 33 XPAL 3
0F70 C401 LDI 1
0F72 CAE4 ST Count! 2)

OF 74 C506 LD (3 + 6(1) P1-> Vel+ 2
OF 76 9404 JP Twice Altitude positive?
OF 78 C504 LD @ - 4 (l) P1->Thr+ 1
OF 7A 9032 JMP Off Don't update
OF 7C C402 Twice LDI 2 Update velocity anc
OF 7E CAE3 ST Row(2) Then altitude....
0F80 02 CCL
OF 81 C5FF Dadd: LD @ - 1 (1)
OF 83 E902 DAD + 2(1!
OF 85 C900 ST (1)
OF 87 BAE3 DLD Row(2>
OF 89 9CF6 JNZ Dadd
OF 88 C102 LD + 2(1)
OF 8D 9402 JP Pos ;Gone negative?
OF 8F C499 LDI X'99
OF 91 EDFF Pos: DAD @ - 1 (1)
OF 93 C900 ST (1)
OF 95 BAE4 DLD Count! 2)
OF 97 94E3 JP Twice
OF 99 C50C LD @12(1) P1 -> Alt
OF 9B AAE3 ILD Row(2) ;Row: = 1
OF 9D 03 SCL
OF9E C5FF D sub: LD @ - 1 (1) ;Fuel
OF AO F9FE CAD - 2 (1) Subtract thrust
OF A2 C900 ST (1)
OF A4 08 NOP
OF A5 BAE3 DLD Row(2>
OF A7 94F5 JP Dsub
OF A9 06 CSA ;P1 -> Fuel now
OF AA 9402 JP Off Fuel run out?
OF AC 9004 JMP Accns
OF AE C400 Off LDI 0
OF BO C9FF ST - 1 (1) Zero thrust
OF B2 C1FF Accns: LD - 1 (1)
OF B4 03 SCL
OF B5 EC94 DAI 099—Grav
OF B7 C9FD ST - 3 (1) Accn + 1
OF B9 C499 LDI X'99
OF BB ECOO DAI 0
OF BC C9FC ST - 4 (1) Accn
OF BF C100 Dispy: LD (1) Fuel
OFC1 3E XPPC 2 Display it OK
OFC2 C1F9 LD - 7 (1) Vel
OF C4 940A JP Posv
OFC6 C499 LDI X'99
OFC8 03 SCL
OFC9 F9FA CAD - 6 (1) ,Vel + 1
OFCB 03 SCL
OF CC ECOO DAI 0
OFCE 9002 JMP STO
OF DO C1FA Posv: LD - 6 (1) Vel + 1
OF D2 3E Sto: XPPC 2 Display velocity
OFD3 C1F7 LD - 9 (1) Alt + 1

OF 2E C461 LDI Duck
0F30 9002 JMP Go
OF 32 C400 No: LDI 0 ;No duck
OF 34 C980 Go: ST - 1 2 8 (1) ;E as offset
OF 36 8F01 DLY 01 ;Shine digit
OF 38 C0D8 LD Sum
0F3A 9C0E JNZ Nok ;K&y already pressed
OF 3C 01 80 LD - 1 28(1) ;Test for key
0F3E E4FF XRI OFF
0F40 9808 JZ Nok ;No key
0F42 C8CE ST Sum
OF 44 COCA LD Row
OF 46 E480 XRI 080
0F48 C8C6 ST Row ;Change top bit
OF 4A 40 Nok: LDE
0F4B 03 SCL
0F4C FC01 CAI • 1 ;Subtract 1
0F4E 94D6 JP Ndig ;Do next digit
0F50 B8BF DLD Count
OF 52 98C8 JZ React ;Start new position
OF54 C407 LDI 7
OF 56 90CE

0000
JMP
.END

Ndig ;Another sweep

Mastermind
0F00 Ram OFOO
0D00 Disp ODOO ; Display address
01 OB Crom 01 OB ;Hex to segment table
011B Adr 01 1B ;'Make 4 digit address'
01 5A Dispa 01 5A

Variables in RAM
;'Address to segments'

0000 DL 0
0002 DH 1.
0004 Adll 4
OOOC Adl 1 2
OOOE Adh 14
OOOF Ddta 15
0 0 1 0 Row 1 6
001 1 Next 1 7
001 4 Key 20

Begin at OFIC
0000 . = OFIC
OF 1C C400 Start: LDI 0
OF 1 E C8ED ST ADL %

OF 20 C8ED ST ADH
OF22 32 XPAL 2
OF 23 C40F LDI OF
0F25 36 XPAH 2

; Choose random number
OF 26 C401 LDI H(Crom)
OF 28 37 XPAH 3

OF 29 C40B LDI L(Crom)
OF 2B 33 XPAL 3
OF 2C C404 No Key: LDI 04
OF 2E CA10 ST Row(2)
OF 30 C40F LDI H(digits)
OF 32 35 XPAH 1
OF 33 C414 LDI L(Digits)
OF 35 31 XPAL 1
OF 36 03 SCL
OF 37 C104 Incr: LD + 4(1)
OF 39 EC90 DAI 090
0F3B C904 ST + 4(1)
OF 3D D40F ANI OF
0F3F 01 XAE
OF 40 C380 LD - 1 28(3)
OF 42 CD01 ST @ + 1(1)
0F44 BA10 DLD Row(2)
OF 46 9CEF JNZ Incr
OF 48 C40D LDI H(Disp)
0F4A 35 XPAH 1
OF 4B C400 LDI L(Disp)
0F4D 31 XPAL 1
0F4E C103 LD 3(1) ;Key pressed?
OF 50 E4FF XRI OFF
OF 52 98D8 JZ No key

f Enter your guess
OF 54 C4FF Clear: LDI OFF
OF 56 CAOF ST Ddta(2)
OF 58 C400 Blank: LDI 0
OF 5A CAOO ST DL(2)
OF 5C CA01 ST DH(2)
OF 5E 02 Nchar: CCL
OF 5F C401 LDI H(Dispa)
0F61 37 XPAH 3
0F62 C459 LDI L(Dispa)— 1
OF 64 33 XPAL 3
0F65 3F XPPC 3 ;Jump to subroutine
0F66 900B JMP COMD ;Command key return
0F68 40 LDE ;Number key return
0F69 F4F6 ADI 0F6
0F6B- 94 F1 JP Nchar ;lgnore digits > 9
0F6D C41 A LDI L(Adr)— 1
0F6F 33 XPAL 3
OF 70 3F XPPC 3
OF 71 90E5 JMP Blank ;Get next digit
OF 73 E403 Comd: XRI 03 ;term?
OF75 9A1 B JZ Start! 2) ; l f so—new game
OF 7 7 E405 XRI 05 ;Go?
OF 79 9CD9 JNZ Clear ;lgnore if not

Work out answer to guess
OF 7B C40B Go: LDI L(Crom)
OF 7D CAOO ST DL(2)
OF 7F CA01 ST DH(2)
0F81 C40F Bulls: LDI H(Kev)

OF83 35 XPAH 1
0F84 C41 4 LDI L(Key)
0F86 31 XPAL 1
0F87 C480 LDI 080
0F89 01 XAE
0F8A C404 LDI 04 ;No. of digits
0F8C CA1 1 ST Next(2)
0F8E C1F0 Bull 2: LD Adll-Keyt 1)
OF 90 E501 XOR @+1(1)
0F92 9C0C JNZ Nobul
OF 94 AA01 ILD DH(2)
0F96 C1FF LD —1(1)
0F98 58 ORE ;Set negative
OF 99 C9FF ST —1(1)
OF 9B C1EF LD Adll-Key-1(1)
0F9D 58 ORE
OF 9E C9EF ST Adll-Key-1(1)
OFAO BA1 1 Bobul: DLD Next(2)
OF A2 9CEA JNZ Bull 2
OF A4 C404 Cows: LDI 04
OF A6 CA1 1 St Next(2) ;P1 points to Key+ 4
0FA8 C404 Nerow: LDI 04
OFAA CA10 ST Row(2)
OFAC C40F LDI H(Adll)
OFAE 37 XPAH 3
OFAF C408 LDI L(Adll) + 4
0FB1 33 XPAL 3
0FB2 C5FF LD @ - 1 (1 >
0FB4 940A JP Try ;Already counted as bull?
0FB6 BA1 1 Nocow: DLD Next(2) ;Yes
0FB8 9CEE JNZ Nerow
OFBA 9013 JMP Finito
OFBC BA10 Notry: DLD Row(2)
OFBE 98F6 JZ Nocow
OFCO C100 Try: LD (1)
0FC2 E7FF XOR @ — 1 (3) :Same?
0FC4 9CF6 JNZ Notry
0FC6 AAOO ILD DL(2)
0FC8 C300 LD (3)
OFCA 58 ORE
OFCB CBOO ST (3)
OFCD 90E7 JMP Nocow

; Now unset top bits of Key
OFCF C404 Finito: LDI 04
OF D1 CA1 1 ST Next(2)
OF D3 C100 Unset: LD (1)
OF D5 D47F ANI 07F
0FD7 CD01 ST @+ 1(1)
OF D9 BA1 1 DLD Next(2)
OFDB 9CF6 JNZ Unset ;AII done?

;Set up segments of result
OF DD C401 LDI H(Crom)
OFDF 35 XPAH 1
OF EO C200 LD DL(2) ;L(Crom) +Cows
0FE2 31 XPAL 1
OF E3 C100 LD (1) ;Segments
0FE5 CAOO ST DL(2)
0FE7 C201 LD DH<2) ;L(Crom) + Bulls
OF E9 31 XPAL 1
OFEA C100 LD (1) ;Segments
OFEC CA01 ST DH(2)
OFEE C4FF LDI OFF
OFFO CAOF ST Ddta(2)
0FF2 925D JMP Ncharl2) ; Display result

0 0 0 0 END

Silver Dollar Game
; Machine plays against you in moving five
; 'Silver Dollars' along a track
; Player unable to move loses

0 0 0 0 = 0F1 2
; Starting position: Must be ascending order

OF 12 FF Start: BYTE OFF
OF 13 03 BYTE 03
OF 14 05 BYTE 05
OF 15 08 BYTE 08
OF 1 6 09 BYTE 09
OF 1 7 OF BYTE 0

OFOO Ram = OFOO
0F18 Pos: . = . + 6 ;Current position

0024 Count = 024 ;Ram offsets:
0025 Key = 025 ;For key last pressed
0026 Init = 026 ;Zero
0185 Kybd = 0185 ;ln monitor
FF80 E = - 1 28 ;Extension reg

; Begin execution here
0F1E . = 0F28
0F28 C40F Begin: LDI H(Ram)
OF 2A 36 XPAH 2
OF 2B C400 LDI L(Ram)
OF 2D 32 XPAL 2
OF 2E C40F LDI H(Pos)
0F30 35 XPAH 1
0F31 C418 LDI LI Pos)
0F33 31 XPAL 1
OF 34 C406 LDI 6
0F36 CA24 ST Count (2)
OF 38 C1FA Setup: LD - 6 1 1) ;Transfer start to pos
OF 3A CD01 ST @+ 1(1)
0F3C BA24 DLD Count(2)

OF 3E 9CF8 JNZ setup
OF 40 C400 Ymove: LDI 0
OF 42 CA25 ST Key(2)

;Generate display from Pos
OF 44 C40F Disp: LDI H(Pos)
OF 46 35 XPAH 1
0F47 C41 9 LDI L(PoS) + 1
OF 49 31 XPAL 1
OF 4A 0409 LDI 9
OF 40 01 Clear: XAE
OF 4D C408 LDI 08
OF 4F CA80 ST E<2)
OF 51 40 LDE
OF 52 FC01 CAI 1
OF 54 94F6 JP Clear
0£ 56 C405 LDI 5
OF 58 CA24 ST Count! 2)
OF 5A 0501 Npos: LD @ + 1 (1)
0F5C 1 E RR
OF 5D 940B JP Even
OF 5F D47F Odd: ANI 07F
0F61 01 XAE
OF 62 C280 LD E<2)
0F64 DC30 ORI 030
OF 66 CA80 ST E(2)
OF 68 9007 JMP Cont
OF 6A 01 Even: XAE
OF 6B C280 LD E(2)
OF 6D DC06 ORI 06
OF 6F CA80 ST E(2)
OF 71 BA24 Cont: DLD Count (2)
OF 73 9CE5 JNZ Npos

;Display current position
OF 75 C401 Show: LDI H(Kybd)
OF 77 37. XPAH 3
OF 78 C484 LDI L(Kybd)-1
OF 7A 33 XPAL 3
OF 7B 3F XPPC 3
OF 70 902A JMP Coma
OF 7E 40 LDE
OF 7F 98F4 JZ Show
0F81 03 SCL
OF 82 FC06 CAI 6
OF 84 94EF JP Show
OF 86 C40F LDI H(Pos)
OF 88 35 XPAH 1
OF 89 C418 LDI L(Pos)
OF 8B 02 CCL
OF 8C 70 ADE
OF 8D 31 XPAL 1
OF 8E C100 LD (1)
OF 90 02 CCL
OF 91 F4FF ADI - 1

;You go first!
;Clear key store

;Clear Display buffer
;Underline

;Segments E & F

;Segments B & C

;Command key

;1 -5 allowed

OF 93 02 CCL
OF 94 F9FF CAD - 1 1)
OF 96 9402 JP Fine 2 ;Valid move
OF 98 90DB JMP Show
OF 9A C225 Fine 2: LD Key(2)
OF 9C 9C03 JNZ Firstn
OF 9E 40 LDE
OF 9F CA25 ST Key(2) ;First key press
OF A1 60 Firstn: XRE ;Not first press
OF A2 9E43 JNZ Disp(2) ;not allowed
OF A4 B900 DLD (1) ;Make move
OF A6 9243 JMP Disp(2) ;Display result
OFA8 C225 Coma: LD Key(2) ;Mem pressed
OF AA 9A43 JZ Disp! 2) ;You haven't moved!
OF AC C403 Go: LDI 3
OF AE CA24 ST Count! 2)
OFBO C40F LDI H(Pos)
OFB2 35 XPAH 1
OFB3 C418 LDI LI Pos)
OFB5 31 XPAL 1
OF B6 C400 LDI 0
OFB8 01 XAE
OF B9 C101 Try: LD + 1(1)
OFBB 02 CCL
OFBC FD02 CAD @ + 2(1)
OFBE C904 ST 4(1)
OFCO 60 XRE ;Keep nim sum
OFC1 01 XAE
OFC2 BA24 DLD Count) 2)
0FC4 9CF3 JNZ Try.
OFC6 40 Solve: LDE
0FC7 980E JZ Nogo ;Safe position
0FC9 E100 XOR (1)
OFCB 03 SCL
OFCC FD02 CAD @ + 2(1)
3FCE 94F6 JP Solve
OF DO 02 CCL
0FD1 F1F9 ADD - 7 (1) ;Make my move
0FD3 C9F9 ST - 7 (1)
OFD5 923F JMP Ymove(2) ;Nowyou, good luck!
0FD7 C405 Nogo: LDI 05
0FD9 CA24 ST Count! 2) ;Make first move
OFDB C5FF No: LD @ - 1 (1)
OFDD 02 CCL
OFDE F4FF ADI - 1
OFEO 02 CCL
OFE1 F9FF CAD - 1 (1)
OFE3 9406 JP Fine
OFE5 BA24 DLD Count! 2)
OFE7 9CF2 JNZ No
OFE9 9307 JMP + 7(3) ;i.e. Abort—I lose
OFEB B900 Fine: DLD (1) ;Make my move
OFED 923F JMP Ymove(2) ;now you chum.

0000 END

Music
'Function Generator' produces a periodic waveform by outputting
values from memory cyclically to a D/A converter. It uses the 8-bit port
B of the RAM I/O chip to interface with the D/A, and Fig. 1 shows the
wiring connections. The D/A chosen is the Ferranti ZN425E, a low-cost
device with a direct voltage output.

Any waveform can be generated by storing the appropriate values in
memory. The example given was calculated as an approximation to a
typical musical waveform.
'Music Box' plays tunes stored in memory in coded form. The output can
be taken from one of the flag outputs. Each note to be played is encoded
as one byte. The lower 5 bits determine the frequency of the note, as
follows:

Rest A At? B C Cff= D D # E F F # G
0 0 01 02 03 04 05 06 07 08 09 OA OB OC

OD OE OF 10 1 1 12 13 14 15 1 6 1 7 18
There are two octaves altogether.

The top three bits of the byte give the duration of the note, as
follows:
Relative Duration: 1 2 3 4 5 6 7 8

0 0 20 40 60 80 AO CO EO
Thus for any specific note required the duration parameter and
frequency parameter should be added together. A zero "byte is reserved
to specify the end of the tune.

The program uses two look-up tables, one giving the time-constant
for a delay instruction determining the period of each note and the other
giving the number of cycles required for the basic note duration.
'Organ' generates a different note for each key of the keyboard by using
the key value as the delay parameter in a timing loop. Great skill is
needed to produce tunes on this organ.

Fig. 1

95

Function Generator
Generates arbitrary waveform by outputting
values to D/A Converter.
uses Ram I/O chip. (Relocatable).

Portb = 0E21
E = - 1 28 ; Extension as offset

0000
'

. = 0E80 ;Start of Ram in Rarr
0E80 C40F Start: LDI H(Endw)
0E82 36 XPAH 2
0E83 C448 LDI L(Endw)
0E85 32 XPAL 2 ;P2-> End of waveforr
0E86 C40E LDI H(Portb)
0E88 35 XPAH 1
0E89 C421 LDI L(Portb)
0E8B 31 XPAL 1
0E8C C4FF . LDI X'FF ;All bits as outputs
0E8E C902 ST + 2(1) ;0utput definition B
0E90 C4D8 Reset: LDI — Npts
0E92 02 CCL
0E93 01 Next: XAE
0E94 C280 LD E(2) ;Get next value
0E96 C900 ST (1) ;Send to D/A
0E98 40 LDE
0E99 F401 ADI 1 ;Pointto next value
0E9B 98F3 JZ Reset ;New sweep
0E9D 04 DINT ;Equalize paths
0E9E 90F3 JMP Next ;Next point

OEAO

Sample waveform of 40 points
Fundamental amplitude 1
2nd Harmonic amplitude 0.5 zero phase
3rd Harmonic amplitude 0.5 90 deg. lag.

Equation is:
Sin(X) + 0.5*Sin(2.0*X)40.5*Sin(3.0*X —0.5 *n)
With appropriate normalization

. = 0F20

0F20
0F26
0F2C
0F32
0F38
0F3E
0F44

Wave:

0F48
0028
0000

Endw
NPTS

BYTE
.BYTE
.BYTE
.BYTE
BYTE

.BYTE

.BYTE

.END

077,092,0B0,0CB,0E1,0ED
0EF,0E6,OD5,0BE,0A5,08E
0 7F, 07 7,07 6,07 D, 08 7,09 2
09 B,09E, 09 A,090,080,06 F
05C, 04D,042,030,030,040
046,04B,04D,04D, 04 A, 04 6
044 ,047 ,050 ,060

Endw—wave ;No. of points

96

Music Box
Plays a tune stored in memory
1 Byte per note
top 3 bits = duration (00-E0) = 1 to 8 units
bottom 5 bits = note (01 -1 8) = 2 Qctaves

0 0 0 0 . = 0F1 2
;Table of notes

0F1 2 Scale: BYTE 0 ;Silence
0F13 .BYTE 0FF,0EC,0DB,0CA,0BB,0AC
0F19 BYTE 09E.091,085,079,06E,063
0F1F BYTE 059 ,050 ,047 ,03F ,037 ,030
OF25 BYTE 029 ,022 ,01 C,01 6,01 1,00C

;Table of cycles per unit time
0F2B .BYTE 044 ,048 ,04C,051 ,055 ,05B
0F31 .BYTE 060 ,066 ,06C,072 ,079 ,080
0F37 .BYTE 088,090,098,0A1,0AB,0B5
0F3D BYTE OCO,OCB,OD7,OE4,OF2,OFF

;Program now:
0F43 Cycles: . = . + 1
0F44 Count: . = . + 1

0F45 3F Stop: XPPC 3 ;'Go, 'term', to play again
;Begin execution here

0F46 C40F Begin: LDI H(Scale)
0F48 35 XPAH 1
0F49 C40F LDI H(Tune)
0F4B 36 XPAH 2
0F4C 0490 LDI L(Tune)
0F4E 32 XPAL 2 ;P2 points to tune
0F4F 0601 Play: LD @ + 1(2) ;Get next note code
0F51 01 XAE ;Save in ext.
0F52 40 LDE
0F53 98F0 JZ Stop ;Zero = terminator
0F55 10 SR
OF56 10 SR
OF57 10 SR
0F58 D4FC ANI X'FC
0F5A C8E9 ST Count
0F5C 0412 LDI L(Scale)
0F5E 01 XAE
0F5F 041 F ANI X' 1F ;Get note part
0F61 02 CCL
0F62 70 ADE ;no carry out
0F63 31 XPAL 1 ; Point P1 to note
0F64 0100 LD (1) ;Note
0F66 01 XAE ;Put it in ext.
0F67 0118 Hold: LD + 24(1) ;Cycle count
0F69 C8D9 ST Cycles
0F6B 40 Peal: LDE

97

0F6C 9C04 JNZ Sound ;Zero = silence
0F6E 8F80 DLY X'80 ;Unit gap
0F70 901 1 JMP More
OF72 8F00 Sound: DLY X'OO
0F74 06 CSA
OF75 E407 XRI X'07 ;Change flags
0F77 07 CAS
OF7B B8CA DLD Cycles
0F7A 9807 JZ More
OF7C 08 NOP ;Equalize paths to
0F7D C410 LDI X '10 ;Prevent clicks in
OF7F 8F00 DLY X'OO ;Sustained notes
0F81 90E8 JMP Peal
0F83 B8C0 More: DLD Count
0F85 94E0 JP Hold
0F87 8F20 DLY X'20 ;Gap between notes
OF89 90C4 JMP Play ;Get next note

0F8B . = 0F90
0F90 Tune: BYTE 02D,02D,02F,04C,00D,02F
0F96 .BYTE 031,031 ,032,051,OOF,02D,
0F9C .BYTE 02F,02D,02C,02D,00D,00F
0FA2 BYTE 01 1 ,012 ,034 ,034 ,034 ,054 ,
0FA8 BYTE 01 2 ,031 ,032 ,032 ,032 ,052 ,
OFAE BYTE 01 1.02F.031,01 2,01 1,00F •
0FB4 BYTE 00D,051 ,01 2,034,01 6,032
OFBA BYTE 071,06F,08D,0

0000 .END

Organ
; Each key on the keyboard generates a

j ; different note (though the scale is
; somewhat unconventional!) Relocatable.

. = 0F1 F
0F1 F Count: . = . + 1

ODOO Disp: = ODOO ;Display & keyboard

0F20 C40D Enter: LDI H(Disp)
OF22 35 XPAH 1
0F23 C400 New: LDI L(Disp)
OF25 31 XPAL 1
0F26 C408 LDI 08
OF28 C8F6 ST Count ;Key row
0F2A C501 Again: LD @ + 1(1)
0F2C E4FF XRI OFF ;Key pressed?
0F2E 9808 JZ No
0F30 8F00 DLY 00 .Delay with AC = key
0F32 06 CSA
0F33 E407 XRI 07 ;Change flags

98

0F35 07 CAS
0F36 90EB JMP New
0F38 B8E6 No: DLD Count
0F3A 9CEE JNZ Again
0F3C 90E5 JMP New

0000 .END

Miscellaneous
'Message' gives a moving display of segment arrangements according
to the contents of memory locations from 'Text' downwards until an
'end-of-text' character with the top bit set (e.g. 080) . Each of the bits
0-6 of the word in memory corresponds, respectively, to the seven
display segments a-g; if the bit is set, the display segment will be lit.
Most of the letters of the alphabet can be formed from combinations of the
seven segments: e.g. 076 corresponds to 'H', 0 3 8 to 'L', etc. The speed
with which the message moves along the display depends on the counter
at OF2D. If the first and last 7 characters are the same, as in the sample
message given, the text will appear continuous rather than jumping from
the end back to the start.
'Reaction Timer' gives a readout, in milliseconds, of the time taken
to respond to an unpredictable event. To reset the timer the '0 ' key
should be pressed. After a random time a display will flash on. The
program then counts in milliseconds until the 'MEM' key is pressed,
when the time will be shown on the display.

The execution time of the main loop of the program should be
exactly one millisecond, and for different clock rates the delay constants
will have to be altered:

Rate
1 MHz
2 MHz
4 MHz

Location: 0F2A
07D
OFA
OFF

0F37
0A8
0A1
093

0F39
00
01
03

'Self-Replicating Program' makes a copy of itself at the next free
memory location. Then, after a delay, the copy springs to life, and itself
makes a copy. Finally the whole of memory will be filled by copies of the
program, and from the time taken to return to the monitor one can
estimate the number of generations that lived.

Message
Displays a moving message on the
7-segment displays

0 0 0 0 . = 0F1 F
0F1F Speed: . = . + 1

0F20 C40D Tape: LDI H(Disp)
0F22 35 XPAH 1
0F23 C400 LDI L(Disp)
0F25 31 XPAL 1
0F26 C40F Go: LDI H(Text)
0F28 36 XPAH 2
0F29 C4CA LDI L(Text)-8
0F2B 32 XPAL 2
0F2C C4EO Move: LDI X'EO ;Determines sweep speed

100
•

1

0F2E C8F0 ST Speed
0F30 C407 Again: LDI 7
0F32 01 Loop: XAE
0F33 C280 LD -1 28(2)
OF35 C980 ST -1 28(1)
0F37 C4FF LDI X'FF
0F39 02 CCL
0F3A 70 ADE
0F3B 94F5 JP Loop
0F3D B8E1 DLD Speed
0F3F 9CEF JNZ Again
0F41 C6FF LD @-1(2)
0F43 94E7 JP Move
0F45 90DF JMP Go

0D00 Disp = 0D00

0F47
OFAO
0FA6
OFAC
OFB2
OFB8
OFBE
0FC4
OFCA
OFDO

;i.e. decrement ext.

;Move letters
;X '80 = end of text

A sample message
Messagp is stored backwards in memory
first character is 'end of text', X '80.
For a continuous message, first and
last seven characters must be the
same (as in this case).

. = OFAO
BYTE

.BYTE
BYTE
BYTE
BYTE

.BYTE
BYTE
BYTE
BYTE

080 ,079
077,039,
040.06D
07F.040,
040,06E,
040 ,077
039 ,040
040 ,079
077 ,039

079
040
077
079 ,
038 ,
0 4 0
071
079

,06D,040,037
,03E,03F,06E
,040,06E,03E
037 ,030 ,071
038,03F,01 F
,06D,030,040
,03F,040,06D
,06D,040,037

0FD2 Text ;start of message

0000 END

Self-Replicating Program
; Makes a copy of itself and then
; executes the copy.
; Only possible in a processor which permits
; one to write relocatable code, like SC/MP

FFFC
000D

LDX
STX

Head-Loop-1 ;offset for load
Last-Store-1 ;offset for store

0000
0F1 2
0F14
OF 1 5

C4FC
01
C080

Head:

Loop:

. = 0F1 2
LDI
XAE
LD

LDX

- 1 2 8 (0) ;PC-relative-ext = offset

101

0F1 7
0F1 8
0F1 9
0F1 B
0F1C
0F1E
0F1 F
0F20
OF22
0F23
0F24
0F26
OF28
0F2A

01
02
F41 1
01
C880
40
03
FC10
01
40
E414
9CED
8FFF

0000

Store;

Last

XAE
CCL
ADI
XAE
ST
LDE
SCL
CAI
XAE
LDE
XRI
JNZ
DLY

.END

STX-LDX

-128(0) ; ditto

STX-LDX-1 ;i.e. increment ext.

Last-Loop-1 ;finished?
Loop
X'FF ;shows how many copies

,were executed.

Reaction Timer
Gives readout of reaction time in milliseconds
display lights up after a random delay
Press'MEM' as quickly as possible.

; Press '0 ' to play age in. (Relocatable)
; 150 = excellent, 250 = average, 350 = poor

01 F4 Cycles - 500 ;SC/MP cycles per msec
OFOO Ram = OFOO
ODOO Disp = ODOO
0005 Adlh = 5
OOOC Adl = 12
OOOE Adh = 14
01 5A Dispa = 01 5A /Address to segments'

0000 . = 0F20
0F20 C401 Begin: LDI H(Dispa)
0F22 37 XPAH 3
0F23 C459 LDI L(Dispa) — 1
0F25 33 XPAL 3
0F26 C205 LD Adlh(2) ; 'Random' number
OF28 01 Wait: XAE
0F29 8F7D DLY Cycles/4
0F2B 02 CCL
0F2C 70 ADE ;Count down
0F2D 94F9 JP Wait
0F2F C903 ST + 3(1) ;Light'8' on display
0F31 40 LDE ;Now zero
0F32 CAOC ST Adl(2)
0F34 CAOE ST Adh(2)

;Main loop ; length without DLY = 151 fjcycles
0F36 C4A8 Time: LDI (Cycles-1 5 1 - 1 3 1 / 2
0F38 8F00 DLY 0
0F3A 03 SCL
0F3B C20C LD Adl(2)

102

0F3D 68 DAE
0F3E CAOC ST Adl(2)
0F40 C20E LD Adh(2)
0F42 68 DAE
0F43 CAOE ST Adh(2)
0F4 5 40 LDE
0F46 02 CCL
0F47 F903 CAD + 3(1) Test for key
0F49 98EB JZ Time
0F4B 3F Stop: XPPC 3 Go display time
0F4C 90FD JMP Stop Illegal return
0F4E 90D0 JMP Begin Number key

0F50 . = 0FF9 Pointers restored
j From ram

0FF9 ODOO .DBYTE Disp P1-> Display
OFFB OFOO .DBYTE Ram P2-> Ram

0 0 0 0 .END

MK 14

VDU Instructions

The MK 14 VOU |» memory mapped and works by DMA (Direct Memory Access) of the MK14 memory. It must
be connected to the address bus and the data bus of the MK14. Each time the VDU needs to read the memory (so that
it can display its contents).the VDU sends a signal to stop the SCMP (this signal is called NENIN). It then takes NRDS
low and counts up twice through the addresses on AO - A7 meanwhile displaying their contents. The memory page (1
page - 256 bytes) selected depends on the inputs PS1 - PS4 (page selects) which correspond to A8 A l l . If these
are changed half way through a vertical scan of the TV two different pages may be displayed. The VDU requires only
a >5 volts stabilised power supply from the MK14 regulator. A heatsink will be necessary.

Construction Notes.

1. We recommend you use sockets for all the integrated circuits.
2. When soldering use a minimum of solder and a fine tipped soldering iron.
3. The holes are plated through and you should not solder both sides of the board.
4. Check the board carefully for any flaws.
5. Carefully read all the notes we supply. If you are truly uncertain about how to proceed contact us for more

information.

6. Use reasonable caution when handling CMOS components.

Component List.
Part Number Value Remarks

R1.R16 470 Yellow Violet Brown
R2, R11.R14. R17 IK2 Brown Red Red
R3. R4 27tC Red Violet Orange
R5. R7. R10. R12, R13, R15 4K7 Yellow Violet Red
R8 2K4 Red Yellow Red
R9 '50 Brown Green Brown
R6 — Not required
CI, C2. C3, C4, C5, C6, C7 Any value between 30N and 100N
C8 ,_6tO» 10 /> 0N0 u. 002 t • Ot
C9 220 220K or 221
c , ° - Not required
C11 ,23 KOC Q2J I 6 i
0 1 Blue body. White band + ve.
Q1.Q2, Q3, Q4 BC239
IC1 74L86
'C2 74LS20 May be 74L20
IC3 74LS93
>c« 74LS74 May be 74L74
, c 5 4011 May be 5611
l c e 4040 May be 5640
IC7, ICt 2 74LS04 May be 74L04
I C 8 74LS157 May be 81L72 or 74LI 57
IC9, IC10 80L95
IC11 74LS27
IC13 4012 May be 5612
, c ' 4 74LS00 May be 74L00
, C 1 5 DM8678CAB Character generator
I C , « 74LS165 May be 8590

Altec UM1233 Modulator
Printed Circuit Board.

First of all make the following connections. If YOU have an issue 4 or issue 5 board the connections can be made
through a double sided connector at the top of the MK14 board.

VDU connection* Name MK14 connection Remarks

al OV pin 20 of IC1 Zero volts
a2 AO pin 25 Address bus
a3 A l pin 26 "

a4 A2 pin 27 "

35 A3 pin 28 "

a6 A4 pin 29 "

a7 A5 pin 30 "

a8 A6 pin 31 "

a9 A7 pin 32 "

a10 A8 pin 33 "

a l l A9 "in 34 "

a12 A10 p.n 35 "

a13 A l 1 pin 36 "

a18 DO pin 16 Data bus
a19 D1 pin 15 "

a 20 D2 pin 14
a21 D3 pin 13
a22 D4 pin 12
a 23 05 1 . 1.
a24 D6 p,.- 10
a25 D7 pin 9 "

a28 NRDS pin 2 Negative read strobe
s31 NENIN pin 3 Stop processor
a32 +5V pin 40 Power supply

"looking at the component side of the PCB, row a is closest to the end of the board and connections 32 are r the side
nearest to Q3 and Q4.

VDU connection Name MK14 connection Remarks

b9
blO
b11
b12

PS1
PS2
PS3
PS4

Hard wired to +5V.
0V, or an IO port

These determine which pages are displayed by the
VDU. As a first test connect PS1, PS2, PS3, PS4
to 0V.

b13 VDU OFF FLAG 1 Take low (natural state on reset) to turn VDU on.
b14 GRAPHICS/CHARS Can connect to flag or be switched Take low for character mode, high for graphics.
b15 REVERSE PAGES " Take low to reverse top and bottom pages.
b16 INVERT VIDEO " Take low to j .e reverse video (black on white).
b17 TOP PAGE - High when (iist half of TV picture displayed.
b27 XOUT pin 38 of IC1 Clock signed at 4Mhz. (not 4.43 Mhz).

It is also necessary to make the following modifications to the MK14 board.

1. Connect a 4K7 resistor from NWDS (pin 1 of IC1) to +5V (pin 40 of IC1I.
2. Cut the connection from pin 3 of IC1 (NENIN) to OV.
3. Cut the connection from pin 3 of IC1 to pin 15 of IC10.
4. Remake connection from pin 15 of IC10 to OV.

When first testing the VDU connect b9 - b12 to OV and leave b14 - b17 unconnected. On powering up the MK14
the LED display should work normally. If the Output of the UHF modulator is connected to the aerial socket of a
UHF TV you should be able to find a strong signal from the VDU on channel 36 showing a bit-map of the monitor.

You will notice that the top half and lower half of the screen are the same. Now disconnect b11 from OV and connect
it to b17. The screen will now display the first two 14K pages of memory (the monitor PROM). If you connect b16 to
OV the picture will invert. If you connect b14 to OV the display will show the contents of memory as ASCII characters.
If you connect b15 to ground the top and bottom pages will swap round.

Next try connecting b9, b11 and b12 through a 1K resistor to +5V. The VDU will now display the normal RAM
(OFOO - OFFF) and extra RAM (OBOO OBFFI on the screen. Notice how some locations flicker as they are cont-
inuously changed by the program in the monitor PROM. This flicker disappears if the RESET button is depressed.
Try connecting b14 to b17 to produce a display which is part graphics and part characters. Notice that you can change
the characters by writing new values into the extra RAM area (20 ! 6 corresponds to a space). You can change the
pattern in the graphics area by writing into OF 12 OFFF. (00,6 corresponds to a blank). Notice how the eight
bits of each byte are spread out in a row.

Finally write 02 into OFFF and press GO. (This is a quick way of setting FLAG 1). The VDU display should blank
and the MK14 will run at full speed so that you can load taped programs. Press reset to turn on the VDU again.

NB: When running the VDU causes program execution to run about 6% slower.

The following three programs illustrate how to use an MK14 fitted with the extra RAM, RAM-1/0 chip and VDU. If
the Extra RAM and normal RAM are displayed by the VDU the only RAM area remaining for user program is the RAM
of the RAM-1/0 chip. The following three programs fit into these 8016 bytes. One can of course use part of the VDU
RAM for larger user programs but then they will appear on the display. It is straightforward to add more RAM if this
proves necessary.

BIT is a subroutine that can be used to turn on and off and read the spots of a graphics display. It forms the basis of
a graphics program. (b14 should be taken to +5V through a 1K resistor).

PUTC is a subroutine which makes the MK14 VDU behave like a standard VDU. It puts the ASCII character corres-
ponding to the byte in the accumulator (lower six bits only) onto the screen in consecutive locations and handles the
codes for Carriage Return, Line Feed, Vertical Tab, Backspace and Horizontal Tab. (b14 should be wired to OV).

SHOWCH is a short demonstration program which clears the screen and then displays the font of the character
generator. (b14 should be wired to OV).

A Short Technical Description.

The MK14 VDU uses a 74LS74, a 74LS93 and a 4040 as a counter chain to count the 312 lines of a TV display and to
generate row and column addresses for character or graphics display.

A 74LS157 is used to select the different mappings required for graphics bit map (eight bytes in a row) and for character
display (16 bytes in a row). Two 80L95s isolate the VDU from the address and data bus when it is being used by the
SCMP. A 4011 generates the sync pulse waveforms. A 74L86 is used to invert the video and buffer the CMOS.
Further buffering is performed by the two 74LS04s.

A 74LS165 parallel in/serial out shift register generates the graphics by shifting out the data read on the datiJus and a
DM8678 character generator chip is used to generate ASCII characters from the lower six bits of the databus.

The other chips control the use of the address and databus by the SCMP and VDU and provide the necessary signals for
the shift register and character generator.

Two transistors arc used to buffer NENIN, XOUT and a further two to form a composite video s iQnal which is fed into
the onboard modulator.

BIT PROGRAM FOR MK14 VDU

0880 02 BIT CCL
0881 CAFF ST BIT(2)
0883 C201 LD Y(2)
0885 IE RR
0886 IE RR
0887 IE RR
0888 IE RR
0689 IE RR
088A D4F8 ANI X'F8
088C 01 XAE
088D C200 LD X(2)
088F 1C SR
0890 1C SR
0891 1C SR
0892 D407 ANI X-07
0894 70 ADE
0895 31 XPAL 1
0896 C200 LD X (2)
0898 0407 ANI X'07
089A 02 CCL
0896 F424 ADI X'24
0890 01 XAE
089E C080 LD E(0)
08 AO CAFE ST MASK (2)
08A2 C2FF LD BIT (2)
08A4 940A JP PUT
08A6 C100 GET: LD 0(1)
08A8 D2FE ANO MASK (2)
08AA 9814 JZ RET
08AC C401 LDI X"01
08AE 9010 JMP RET
08Bo 9802 PUT: JZS
0882 C2FE LD MASK (2)
0884 01 S: XAE
0865 C2F€ LD MASK (2)
0867 E4FF XRI X'FF
0869 D500 AND 0(1)
0866 7° ADE
08BC C900 ST 0(1)
086E G2FF LD BIT (2)
08C0 3F RET: XPPC 3
08C1 0080 JMP6IT
08C3 8040201008040201

P1 should point to the page to be displayed.
This routine requires P2 to point to a stack.
0(2) should contain X and 1 (2) contain Y
where 0 < X < 6 3 and (X Y < 3 1 . Values outside
these ranges are mapped on modulo 64 and 32.
If on entry the accumulator contains
a) 00 the bit at (X.Y) is cleared.
b) 01 the bit at (X.Y) is set
c) FF the bit «t (X.Y) is read and the value
returned in the accumulator (0 for zerol.

X and Y are used to calculate PIL.

Use PC relative extension register addressing
to obtain a suitable mask for the bit
corresponding to (X. Y).

Read bit

If zero clear a l l .
Set a bit

Table of mask values

SHOW CHARS ON MK14 VDU

0880 C40F SHOWCH LDI X'OF
0882 35 XPAH 1
0883 C400 SI LDI X'OO
0885 31 S2 XPAL 1
0886 C420 LDI X'20
0888 CD01 ST @ 1(1)
088A 31 XPAL 1
088B 9CF8 JNZS2
088D 35 XPAH 1
088E E40€ XRI X'OC
0890 9804 JZ S3
0892 C40B LDI X'OB
0894 90EC JMPS1
0896 31 S3 XPAL 1
0897 C408 LDI X'OB
0899 35 XPAH 1
089A C443 LDI X'43
089C C902 ST 2(1)
089E C448 LDI X'48
08P0 C903 ST 3(1)
08A2 C441 LDI X'41
08A4 C904 ST 4(1)
08A6 C452 LDI X'52
08A8 C905 ST 5(1)
08AA C43D LDI X'3D
08AC C906 ST 6(1)
08AE A807 S4 ILD 7(0)
0880 C907 ST 7 (1)
08B2 8FFF DLY X'FF
08 B4 90F8 JMPS4

This routine requires only the RAM-I/O
chip and Extra RAM to be fitted. It
first blanks the screen and then displays
the character set.

PUTC ROUTINE FOR MK14

0880 01 PUTC XAE
0881 02 CCL
0882 C406 LDI HfEXTRA RAM)
0884 35 XPAH 1
0885 40 LDE
0888 E400 XRI 000
0888 981B JZ CR
088A E407 XRI 007
068C 981C JZ LF
088E E401 XRI 001
0890 9810 JZ VT
0692 E403 XRI 003
0894 9828 JZ BS
0896 E401 XRI 001
0698 9803 JZ HT
089A 40 LDE
0896 C900 ST 0(1)
0890 31 HT XPAL 1
089E F401 ADI 001
08A0 31 S2 XPAL 1
08 A1 40 LDE
08A2 3F XPPC 3
06A3 9008 JMP PUTC
08A5 31 CR XPAL 1
08A6 D4F0 ANI 0F0
08A8 90F6 JMPS2
08AA 31 LF XPAL 1
08A8 F410 ADI 010
08AD 90F1 JMPS2
06AF C400 VT LDI 000
0661 CAFF ST-1(2)
0863 31 SI XPAL 1
0864 C420 LD! 020
0666 C900 ST 0(1)
0886 AAFF ILD—1 (2)
08BA 9CF7 JNZ SI
068C 90E2 JMPS2
088E 31 BS XPAL 1
068F F4FF ADI OFF
06C1 9000 JMPS2

The character whose ASCII code is in
the accumulator is written to the next
character cell on the screen.
Carriage Return, Line Feed. Vertical Tab,
Backspace and Horizontal Tab are interpreted.

